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Abstract: Recent developments in string theory have led to “realistic” string compacti-

fications which lead to moduli stabilization while generating a hierarchy between the Elec-

troweak and Planck scales at the same time. However, this seems to suggest a rethink of

our standard notions of cosmological evolution after the end of inflation and before the be-

ginning of BBN. This epoch is crucial for addressing the issues of neutrino masses, baryon

asymmetry, Dark Matter (DM) abundance and the moduli (gravitino) problem. We argue

that within classes of realistic string compactifications as defined above, there generically

exists a light modulus with a mass comparable to that of the gravitino which is typically

much smaller than the Hubble parameter during inflation. Therefore, it is destabilized and

generates a large late-time entropy when it decays. Thus, all known elegant mechanisms

of generating the baryon asymmetry of the Universe in the literature have to take this fact

into account.

In this work, we find that it is still possible to naturally generate the observed baryon

asymmetry of the Universe as well as light left-handed neutrino masses from a period of

Affleck-Dine (AD) leptogenesis shortly after the end of inflation, in classes of realistic string

constructions with a minimal extension of the MSSM below the unification scale (consisting

only of right-handed neutrinos) and satisfying certain microscopic criteria described in the

text. The AD mechanism has already been used to generate the baryon asymmetry in

the literature; however in this work we have embedded the above mechanism within a

framework well motivated from string theory and have tried to describe the epoch from the

end of inflation to the beginning of BBN in a complete and self-consistent manner. The

consequences of our analysis are as follows. The lightest left-handed neutrino is required

to be virtually massless. The moduli (gravitino) problem can be naturally solved in this
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mailto:kpiyush@berkeley.edu
http://dx.doi.org/10.1088/1126-6708/2009/05/083


J
H
E
P
0
5
(
2
0
0
9
)
0
8
3

framework both within gravity and gauge mediation. The observed upper bound on the

relic abundance constrains the moduli-matter and moduli-gravitino couplings since the

DM is produced non-thermally within this framework. Finally, although not a definite

prediction, the framework naturally allows a light right-handed neutrino and sneutrinos

around the electroweak scale which could have important implications for the nature of

DM as well as the LHC.

Keywords: Supersymmetry Phenomenology, Strings and branes phenomenology
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1 Introduction

Many theoretical and observational advances have been made to uncover the mysteries of

the very early Universe. Recent cosmological observations from WMAP seem to favor an
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inflationary phase of the Universe.1 Although, there still does not exist an agreed-upon

microscopic theory of inflation, there has been a lot of progress in this direction in recent

years. The theory of the primordial synthesis of nuclei - BBN, which starts at a temperature

of about an MeV, is also quite successful in explaining observations. The evolution of the

Universe after BBN - leading to decoupling of matter and radiation, traditional matter

domination and large-scale structure formation, is also fairly well understood.

However, not much is known about the epoch from the end of inflation to the beginning

of BBN. Theoretically, physics during this epoch has been less studied as a whole (relatively

speaking) compared to the inflationary epoch. However, this epoch is quite important for

a number of reasons. For example, a crucial property of the Universe, the existence of a

baryon asymmetry, has to be explained during this epoch, viz after the end of inflation and

before BBN. This is because, inflation, in addition to successfully diluting dangerous relics

from the early past such as monopoles, domain walls, cosmic strings, etc., also dilutes any

pre-existing baryon asymmetry. Therefore, the baryon asymmetry has to be generated af-

ter the inflationary epoch. The existence of baryon asymmetry requires that the Sakharov

criteria be satisfied. The three most popular ways of satisfying these by a) the Affleck-Dine

mechanism, b) out-of-equilibrium decay of a heavy particle (as in GUT baryogenesis, ther-

mal leptogenesis, resonant soft leptogenesis) and c) during the electroweak phase transition

(as in electroweak baryogenesis) all happen before BBN. Various particle-physics models of

baryogenesis in this epoch incorporating the above mechanisms, especially thermal leptoge-

nesis [1], resonant soft leptogenesis [2], affleck-dine baryogenesis [3] and leptogenesis [4] and

electroweak baryogenesis [5] have been considered in the literature. The origin of neutrino

masses can be linked to the generation of baryon asymmetry in models of leptogenesis,

providing an opportunity to solve both outstanding problems at the same time. In this

sense, the framework of leptogenesis is quite appealing.

Many beyond-the-Standard-Model (BSM) particle physics models well motivated from

a microscopic theory such as string theory, also have additional scalar particles known as

“moduli”. These moduli are scalar fields which couple very weakly to the visible sector and

scale like ordinary matter. Thus, they typically dominate the energy density of the Universe

and could decay after BBN spoiling its successes, and at the same time greatly diluting any

previously generated baryon asymmetry. Therefore, this provides a serious constraint to

all existing mechanisms for producing the baryon asymmetry. The “cosmological moduli

problem” is therefore quite undesirable. In supersymmetric extensions of the Standard-

Model, the overproduction of gravitinos can cause similar problems. In addition, the

“standard” picture in which the Universe is radiation dominated during the whole epoch

can be significantly altered in the presence of moduli. In particular, Dark Matter (DM)

particles, instead of being produced during a phase of thermal equilibrium, are typically

dominantly produced non-thermally, via the direct decay of moduli. However, this can lead

to further problems since it is easy to produce too much dark matter compared with what

we observe today. To summarize, therefore, understanding the epoch starting from the end

of inflation to the beginning of BBN is extremely crucial to addressing all the above issues

in a systematic and holistic manner.

1In this work, we will assume that the inflationary paradigm is correct.
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These problems have been known for a long time, various aspects of which have been

discussed in the literature in the context of supergravity and string theory [6]. However,

early investigations of these issues, although important, were not very concrete as moduli

stabilization in string compactifications and the resulting spectra of moduli was not well

understood. With great improvement in our understanding of moduli stabilization in recent

years, these issues warrant a careful investigation in light of the new developments.

The aim of this work is to do precisely that - address the above issues in a systematic

manner within a well-motivated and complete framework - that provided from string the-

ory. To be clear, the goal is not to construct an explicit model arising from a particular

string construction. Instead, the goal is to figure out the microscopic conditions required

to address and solve the above cosmological issues by utilizing only generic features of

classes of well-motivated low energy effective-field-theories (EFTs) arising in various string

theory compactifications. More precisely, by “well-motivated” it is meant that the string

compactifications stabilize the moduli as well as generate a stable hierarchy between the

electroweak and planck scales. With developments in string compactifications in recent

years, it is now possible to realize these features in a natural manner. In particular, in this

paper we will work within the framework of low energy supersymmetry.

The results obtained from such an analysis are quite encouraging and can be summa-

rized simply as follows. Within classes of string compactifications with a mechanism of

generating a stable hierarchy and stabilizing the moduli at the same time, there is generi-

cally a light modulus (moduli) whose mass is comparable to the gravitino mass scale and

generically much smaller than the Hubble parameter during inflation (Hinf). The modulus

is therefore typically displaced from its minimum, dominates the energy density of the Uni-

verse for a long time and its decay (close to BBN) generates a large entropy which greatly

dilutes any pre-existing baryon asymmetry. Therefore, existing mechanisms of baryogen-

esis have to take this feature into account. We find, in particular, that the mechanism of

Affleck-Dine leptogenesis (via the LHu flat-direction) can still generate the observed baryon

asymmetry as well as light neutrino masses of the Universe shortly after the end of inflation

in classes of string constructions with a minimal extension of the MSSM below the unifica-

tion scale - just consisting of right-handed neutrinos, provided certain microscopic criteria

are satisfied. These are as follows. The spectra should consist of a gauged U(1)B−L symme-

try with right handed neutrinos in addition to that of the MSSM (and possible vector-like

exotics). The gauged U(1)B−L symmetry must be such that the U(1)B−L gauge boson gets

a Stuckelberg mass. String instantons with the appropriate zero-mode structure must be

present in order to give rise to the appropriate Majorana or Weinberg operators generating

neutrino masses. Because majorana masses are generated by instantons and are exponen-

tially suppressed relative to the B − L breaking scale, it is natural for the right-handed

neutrinos to be hierarchical and the heaviest right-handed neutrino to not be displaced

from its minimum during inflation, which is crucial for generating a non-zero baryon num-

ber. Furthermore, generating the correct amount of baryon asymmetry requires that the

neutrino yukawa couplings be very small and that the lightest left-handed neutrino is vir-
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tually massless.2 In an ordinary effective theory, a very small yukawa coupling and lightest

neutrino mass may not look very natural; however since the yukawa couplings in the mi-

croscopic constructions we are interested in are exponentially suppressed, it is natural for

them to be small. The mechanism of generating the baryon asymmetry is similar to the

ones described in [7, 8] where one also requires a very light lightest neutrino (although not

as small as required here). However, in this work we have embedded the mechanism (with

subtle differences in details) in a complete framework well-motivated from string theory.

The above framework can also naturally solve the moduli (gravitino) problem in both

gravity mediation and gauge mediation, although in a different manner. Within gravity

mediation, there is no moduli (gravitino) problem if the lightest modulus is of O(m3/2) &

10 TeV.3 Within gauge mediation, the lightest “modulus”(scalar field) is typically again

of O(m3/2),
4 although m3/2 is much smaller (≤GeV) and stable. So, the main constraint

in this case comes from the decay of this modulus to the gravitino. The dark matter

(DM) candidate, be it the LSP or the gravitino, is dominantly produced non-thermally

within this framework. Therefore, the observed upper bound on the relic density provides

an important constraint on the moduli-matter and the moduli-gravitino couplings arising

within this framework. Finally, although not a definite prediction of the above framework,

the framework allows an interesting possibility at the LHC - that of a right-handed neutrino

at the TeV scale, but without the presence of an additional U(1) gauge boson at that scale.

This could give rise to interesting predictions for the LHC and Dark Matter (DM) and

could in principle be distinguished from scenarios with TeV scale right-handed neutrinos

in which an additional U(1) gauge boson at around the same scale is also present.

To our knowledge, this is the first time that a well defined microscopic framework has

been outlined to address all cosmological issues starting from the end of inflation to the

beginning of BBN in a manner so as to be consistent with low energy supersymmetry and

giving rise to interesting physics at the LHC. Each of the above microscopic conditions are

naturally compatible with each other and have been shown to be true separately within

large classes of constructions. Therefore, we expect that there should exist a reasonably

large class of constructions within the sub-landscape of “realistic” string theory vacua in

which all of them are satisfied simultaneously, leading to a successful solution of all the

above cosmological issues in a natural manner.

The outline of the paper is as follows. Section 2 explains the framework of string

theory compactifications which are well-motivated from a microscopic viewpoint and also

have many desirable features from the standpoint of low-energy physics. The features of the

framework concerning the moduli and matter spectra which are most relevant for addressing

the above mentioned cosmological issues are described in some detail. Section 3 is a detailed

discussion of cosmology within the framework, in particular the mechanisms which generate

the baryon asymmetry in the presence of moduli and also addresses the moduli problem and

generation of adequate amount of Dark Matter. The details of the microscopic structure

2It has an extremely small mass ∼ 10−16eV.
3It is still possible to obtain O(100) GeV superpartner spectra within both gravity and gauge mediation

so as to be interesting at the LHC.
4within a few orders of magnitude.

– 4 –



J
H
E
P
0
5
(
2
0
0
9
)
0
8
3

relevant for the framework, as well as the constraints on the microscopic parameters to

get the correct baryon asymmetry, are discussed in section 4. Section 5 briefly discusses

the realization of the framework studied in other corners of string/M theory, in particular

the low energy limit of M theory compactifications. In section 6, some broad potential

consequences for physical observables are outlined. We conclude in section 7 and discuss

future directions. In appendix A, the mass scale of the lightest modulus is estimated within

gauge mediation. In appendix B, it is shown that it is not possible to generate a baryon

asymmetry by affleck-dine leptogenesis if the heaviest right-handed sneutrino is displaced

from its minimum after inflation. Appendix C deals with some technical details concerning

the computation of the lepton number shortly after inflation, and appendix D estimates the

D-term contribution to the masses of the kähler moduli appearing in the various D-terms.

2 Framework of “realistic” string compactifications

In this section, we give a brief and not very technical review of relevant aspects of string

compactifications giving rise to vacua with many desirable low energy features. This will

be helpful for setting the stage in which all the above cosmological issues can be addressed

systematically. In particular, we will be interested in the spectra of moduli in realistic string

compactifications. This will be crucial for the cosmological evolution of the Universe after

inflation. The reader primarily interested in cosmology may skip this section, nevertheless

it will be useful to remember that in realistic string compactifications with low energy

supersymmetry, there generically exists a light modulus with mass comparable to m3/2,

which is typically much smaller than the Hubble parameter during inflation (Hinf).

The most important challenges to constructing a low energy theory arising from a

string compactification are related to dynamical issues such as moduli stabilization, su-

persymmetry breaking and explaining the Hierarchy between the Electroweak and Planck

scales. Successfully addressing these opens the possibility to construct models of particle

physics beyond the Standard-Model (SM) within the framework of string theory and study

them to the extent that testable predictions for real observables in particle physics and

cosmology can be made. However, in carrying out this program in string theory, it has to

be kept in mind that the properties of beyond-the-Standard-Model (BSM) particle physics

models are intimately connected to the dynamical issues mentioned above. This is because

the masses and couplings of the particle physics models depend on the properties of the

vacuum (or class of vacua) of the underlying string theory compactifications, in particular,

the values of the moduli in the vacuum. In recent years, substantial progress has been

made in the past few years towards addressing the above dynamical issues within various

corners of the entire M theory landscape, see [9–12]. For definiteness, we will consider

Type IIB string compactifications on Calabi-Yau orientifolds where the results are best

understood. However, the arguments given below are quite general and only depend on

certain qualitative features. Hence, these could be generalized to many other known classes

of compactifications.

– 5 –
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2.1 Moduli spectra and low-energy supersymmetry

We are interested in estimating the spectra of moduli masses in “realistic” string compact-

ifications where both the moduli and the Hierarchy are stabilized at the same time. For

concreteness, we will focus on string compactifications with low energy supersymmetry.

Regarding the unification of gauge couplings within the MSSM at MGUT ∼ 1016 GeV as

an important clue, in our analysis we restrict to string compactifications with a high com-

pactification and string scale (MGUT ≈MKK . Ms ∼ 1017 GeV).5 Another reason for such

a restriction is that Ms ≪MGUT, or equivalently, a very large compactification volume V,

gives rise to significantly more serious problems with BBN as will be seen later.

By low-energy supersymmetry it is meant that the scale of superpartners has to be

of O(TeV) in order to stabilize the higgs mass. String compactification frameworks with

moduli stabilization and supersymmetry breaking leading to low energy supersymmetry

are of the following type: supersymmetry is broken in some hidden sector by a combination

of matter and moduli fields and mediated to the visible sector predominantly by exchange

of closed strings (gravity mediation) or open strings (gauge mediation). What dominates

depends on the separation (d) between the hidden sector (which breaks supersymmetry)

and the visible sector, compared to the string length (ls). In cases in which moduli sta-

bilization is best understood, d ≫ ls which gives rise to gravity mediation. Therefore,

we will discuss gravity mediation in more detail, although we will also comment on gauge

mediation models within string theory later.

Intuitively, the above claim can be understood as follows. In models with a vanishing

(tiny) cosmological constant, the gravitino mass in N=1 supergravity can be written as:

m3/2 = eK/2
W

m2
p

≈
√∑

i F
iFi

mp
(2.1)

where F i correspond to fields which have non-zero F -term vevs. In order to explain the

Hierarchy, the gravitino mass m3/2 has to vastly suppressed relative to mp, implying that

Fi has to be suppressed relative to m2
p. This implies from above that W (which depends on

moduli) must also be suppressed6 relative to m3
p. A natural way to obtain a small W is by

an exponential suppression.7 In a generic situation, the curvature of the scalar potential

at the minimum which determines the mass of the modulus appearing in the exponential,

is of O(W
2

m4
p
), or equivalently of O(m2

3/2) from (2.1). The precise value, however, depends

on details. We will carry out a detailed version of this simple argument within Type IIB

compactifications. For completeness, we will estimate the masses of other moduli as well.

Any string compactification preserving N=1 SUSY in four dimensions can be written

at low energies in terms of N=1, D=4 SUGRA, which at the two-derivative level is com-

pletely specified by a Kähler potential, superpotential and gauge kinetic function. For IIB

5The discrepancy of an order of magnitude between Ms and MKK can be naturally explained by threshold

corrections, so we will take all of them to be roughly of the same scale.
6assuming that eK/2 does not give a huge suppression, which is true for compactifications with a large

string scale Ms & MGUT.
7there could be a small constant piece in addition as well.
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compactifications, these are given by:

K = −2 log(V(Ti, Vi)) − log(i

∫
Ω ∧ Ω(Ui)) − log(S + S̄)

−K̂(Yi + Ȳi) + K̃αβ Q̄αQβ + · · · (2.2)

W = Wflux +Wnp +Wmatter

= m3
p

(
1

α′

∫
G3 ∧ Ω(S,Ui) +

∑

i

Ai(Uj , Vk)e
−ai(Ti+hi(F )S)

)

+λ e−S(Tm)QαQβ + yαβγ(Uj , Vk)QαQβQγ + · · ·
fa = Ta + ha(F )S

The kähler potential gets contributions from the moduli and matter fields. The contribution

of matter fields can be expressed as an expansion around the origin as seen from (2.2).8 V
denotes the volume of the internal manifold in units of the string length (ls) and depends

on the kähler (Ti) and open string moduli (Vi). Ω corresponds to the unique holomorphic

three-form of the Calabi-Yau manifold and depends on the complex structure moduli (Ui)

while G3 corresponds to a three-form field strength present in Type IIB string theory

which depends on the dilaton (S). K̃ᾱβ is the kähler metric of the visible matter fields

Qα. The superpotential, in addition to the classical flux contribution which depends on S

and Ui, and the non-perturbative contribution which depends on the kähler moduli (Ti)

and the dilaton, also has a matter contribution. The renormalizable matter superpotential

contains yukawa couplings which depend on the complex structure and open string moduli

and also contains potential mass terms which depend on the kähler moduli, as can be

seen from (2.2). In addition, the superpotential and the kähler potential could also have

non-renormalizable terms; these have been suppressed above. The potential mass terms

will be crucial for the generation of majorana neutrino masses as we will see later. Finally,

the gauge kinetic function depends primarily on the kähler moduli; however demanding a

chiral matter sector on the world-volume of the gauge theory implies that there is also a

dependence on the dilaton which depends on certain topological data ha(F ).

The fluxes generate contributions to the energy density of the order of the string

scale Ms ≡ 1√
α′

, which is the natural scale in the problem. Taking proper account of

the weyl rescaling to Einstein frame, the masses of the moduli stabilized by bulk and

brane worldvolume fluxes (the dilaton, complex structure and open string moduli) can be

estimated as [13]:

mS,Ui,Vi ∼
α′

R3
≡ M3

KK

M2
s

(2.3)

Here, M−1
KK ≡ R is the typical size of the bulk of the Calabi-Yau. These moduli are

stabilized supersymmetrically, so they have negligible F -term components. Since these

moduli have masses of O(1016GeV), below these energies one could integrate them out and

obtain an effective constant flux superpotential W0.

8This is because most matter fields are supposed to have vanishing vevs.
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The Kähler moduli are not stabilized by fluxes. However, non-perturbative effects

can in general give rise to a dependence on these moduli and hence help in stabilizing

them. It has been shown that some Kähler moduli (Ti) can be stabilized dominantly

by non-perturbative effects. However, because of the chirality of the MSSM (and possi-

ble extensions), at least the Kähler modulus which measures the volume of the cycle on

which the SM gauge group is supported cannot be stabilized purely by non-perturbative

effects [14]. This is also true for the modulus Tm appearing in the superpotential in (2.2).

Therefore, some Kähler moduli (Tα) have to be stabilized by a combination of other effects

(arising from D-terms [15], Kähler corrections [16], moduli trapping [17], etc.) and non-

perturbative effects. As shown in [18], the moduli Ti are stabilized supersymmetrically at

leading order while the remaining ones Tα are not. This generically leads to masses for

Ti which are parametrically larger than m3/2 by a factor ∼ ai〈Ti〉. The masses of moduli

which are stabilized primarily by contributions from the Kähler potential are of the same

order as m3/2,
9 while D-term contributions to masses of moduli could be much larger than

m3/2, as estimated in appendix D.

The non-perturbative effects in the superpotential (Wnp) should be of the same order

as W0 to obtain a minimum if the volume V is not too large.10 Thus the flux superpotential

W0 has to be suppressed, just like Wnp. This can be naturally provided by the discrete

tuning of fluxes. In fact, it is also possible to choose fluxes such that W0 vanishes [15].

In the presence of warping, there are also throat moduli (Yi) which are stabilized by the

fluxes, their vacuum values related to the warp factor (eAmin) at the tip of the throat. In

particular [13]:

mYi ∼ eAmin
α′

R3
= eAmin

M3
KK

M2
s

(2.4)

Without additional effects, the vacuum obtained after stabilizing the moduli generi-

cally has negative vacuum energy, i.e. it is an anti de-Sitter (AdS) vacuum. Therefore, a

positive contribution to the vacuum energy is needed to obtain a dS vacuum with a posi-

tive cosmological constant. Moreover, the positive contribution has to be (finely) tuned so

that the cosmological constant has the observed value, for which no satisfactory dynam-

ical solution exists at present. Various mechanisms giving rise to a positive contribution

to the vacuum energy exist, such as explicit supersymmetry breaking contributions from

anti D-branes, or from F -term and D-term uplifting by matter fields. Since our primary

interest is the spectra of moduli (scalar fields), the masses of new scalar degrees of freedom

which appear in the mechanisms above must also be taken into account after fine-tuning

the cosmological constant. F -term uplifting, for example, generically gives rise to masses

for these matter fields of O(m3/2) [12, 19], while D-terms could give rise to large masses

for the moduli, as estimated in appendix D.

We would also like to comment on gauge mediation models within string theory. One

could try to imagine a situation in which all moduli are stabilized at a high scale in an

almost supersymmetric and minkowski vacuum. Although there do not currently exist

9If V is not too large, then the mass of the overall modulus is also of the same order as m3/2.
10This is true in particular if MGUT ≈ MKK . Ms as has been assumed.
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explicit compactifications which realize this situation (however, see [20] for some work

in this direction), but one could hope that future developments could accomplish this.

Supersymmetry could then be broken by a dynamical mechanism in a hidden matter sector

and be mediated to the visible sector by gauge interactions if d ≤ ls. This is the philosophy

of many local models in string theory [21]. However, it is important to note that even

within such gauge mediation models, there exists a modulus-like scalar field (the scalar

partner of the goldstino, or the D-flat direction comprising the vector-like messengers)

which generically gets a mass comparable to m3/2 (within a few orders of magnitude).

This is argued in appendix A for generic models of gauge mediation.

It is important to note that in compactifications in which the volume V is very large (or

equivalently, Ms is much smaller than the traditional MGUT), such as which could arise in

LARGE volume compactifications [22] or in the local models above if they are sufficiently

decoupled from gravity, the overall volume modulus could be much lighter thanm3/2. Thus,

these models would cause very serious problems for BBN unless mechanisms exist which

could sufficiently dilute the entropy produced at late times by the decay of these extremely

light moduli. Although this is possible in principle, there do not exist concrete mechanisms

within string theory at present which realize it. Therefore, as mentioned earlier, we do not

consider this situation.

To summarize, realistic string compactifications with a mechanism of generating and

stabilizing the Hierarchy between the electroweak and Planck scales while stabilizing the

moduli, give rise to two sets of moduli - one very heavy and one light. The light moduli

are typically comparable to m3/2. With low energy supersymmetry, the hubble parameter

during inflation Hinf is typically much larger than the moduli or gravitino mass, which

generically destabilizes the light moduli. This feature is expected to be true for other

classes of string compactifications as well. For example, the above feature is satisfied for

moduli spectra in realistic M theory compactifications studied in [23]. Hence, we will

assume the above spectra of moduli henceforth.

2.2 Visible sector model building

Now that we understand some of the important features of the class of vacua obtained in

the above framework, the next step is to look at fluctuations around these vacua, those

pertaining to matter and gauge degrees of freedom. This corresponds to constructing

the matter and gauge spectrum comprising a beyond-the-SM particle physics model. As

explained earlier, this is not the subject of this paper. Nevertheless, it is worthwhile to

elaborate a little on visible sector model-building.

Most work on explicit string model-building is focussed on computing spectra on com-

pactifications on toroidal orbifolds/orientifolds and Gepner models, where CFT techniques

are available. Computing spectra on a general compact Calabi-Yau is extremely challeng-

ing. However, considerable progress has been made in computing spectra in non-compact

(local) Type II constructions with D-branes at singularities where gravity can be decou-

pled at leading order. In both cases, semi-realistic spectra for beyond-the-SM physics have

been constructed. We will not concern ourselves with constructing specific singularities or

toroidal constructions realizing the MSSM or its extension thereof; rather we are interested
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in studying generic features which are crucial in solving the cosmological problems outlined

in the introduction and would be relevant even if a particular explicit construction is not.

Leptogenesis provides us with an elegant mechanism of explaining the origin of neu-

trino masses as well as the baryon asymmetry of the Universe in one theoretical frame-

work. Therefore, with the principle of Occam’s Razor in mind, in this work we will focus

on leptogenesis as providing the mechanism for baryon asymmetry of the Universe. The

requirement of small neutrino masses requires the presence of the lepton number violating

operator - κ
MLHuLHu in the superpotential, with κ a dimensionless coupling and M a

large mass-scale. There are two ways of generating this operator - a) It may be present

in the microscopic construction itself (“Weinberg” case) and/or b) It may be generated

at lower energies by integrating out right-handed neutrinos (NR) which appear in many

semi-realistic spectra arising from string constructions (“ see-saw case”). These construc-

tions typically have an additional gauged U(1) – U(1)B−L to be precise. The existence

of a gauged U(1)B−L is quite natural as it is the unique flavor independent anomaly-free

U(1) asymmetry, and string theory only allows gauge symmetries. Anomaly cancellation

(including the gravitational anomaly) in fact requires the existence of three families of right-

handed neutrinos. However, for this mechanism to work, large majorana masses for right

handed neutrinos have to be generated. Both of the above mechanisms will be discussed

within the context of string constructions in section 4.2.

For concreteness, in the following, we will assume that the visible sector consists of a

supersymmetric standard model with a U(1)B−L gauge group in addition to that of the

SM and a matter spectrum consisting of the MSSM, possibly vector-like exotics and three

right-handed neutrinos.

3 Cosmology within the framework

In this section, we will discuss the cosmological implications of the framework described

above during and after inflation until the beginning of BBN. As stated earlier, we will

assume the existence of an inflationary phase in the very early Universe which solves

the flatness and horizon problems and also gives rise to almost scale invariant density

perturbations as observed.

Many supersymmetric models such as the MSSM commonly have a degenerate set

of vacua at the level of renormalizable terms, meaning that there are many directions in

the space of scalar fields where the potential vanishes classically in the supersymmetric

limit with mp → ∞. These directions are therefore known as “flat-directions”. These flat-

directions are, however, lifted by supersymmetry breaking and non-renormalizable terms

in the superpotential [24]. We will specifically be interested in the evolution of moduli,

sneutrinos and “flat-directions” during and after inflation as it will be crucial for the

estimation of the baryon asymmetry.

3.1 Evolution during the inflationary phase

As explained in [24], the finite energy density of the Universe during inflation breaks su-

persymmetry. The finite energy supersymmetry breaking is transmitted to the moduli,

– 10 –



J
H
E
P
0
5
(
2
0
0
9
)
0
8
3

sneutrinos and flat-directions by the cross-coupling of the inflaton (which dominates the

energy density during inflation by definition) and the above fields. Ordinary hidden sec-

tor supersymmetry breaking corrections to the scalar potential are much smaller during

inflation since HI ≫ m3/2 in vacua with low energy supersymmetry. Parameterizing all

these couplings, one finds the following contribution to the scalar potential for the moduli,

sneutrinos (if present in the spectrum) and flat directions (φ) during inflation [24]:

Vinf =
N∑

i=1

ci1H
2
I |Xi|2 +M2

Xi
|Xi|2 +

(
bi1HIMXiXiXi + c.c

)
+ · · · .

+ ck2H
2
I |Ñk|2 +Mk

N |Ñk|2 +
(
b2HIM

k
N ÑkÑk + c.c

)
+ · · ·

+ c3H
2
I |φ|2 +

(
aλHIφ

n

nMn−3
+ c.c.

)
+ |λ|2 |φ|

2n−2

M2n−6

+

(
m2

0|φ|2 +
Am3/2λφ

n

nMn−3
+ c.c

)
+ · · · (3.1)

Here {ci1, ck2 , c3}, {bi1, b2} and {a,A, λ} are model-dependent coefficients typically of O(1)

but can be of either sign. From (3.1), we see that the moduli Xi and sneutrinos Ñ have

a mass term in the potential because the moduli are stabilized and the sneutrinos have a

supersymmetric majorana mass term. The flat directions φ on the other hand are massless

at leading order by definition. The scalar potential depends on φ only through super-

symmetry breaking (both hubble induced and hidden sector) and by non-renormalizable

terms in the superpotential. These terms are also present for the moduli and sneutrinos.

However, the hidden sector supersymmetry breaking and non-renormalizable terms are not

written for simplicity as they are much smaller.

We will start by studying the evolution of moduli during inflation. In most natural

models of inflation, the hubble parameter during inflation (HI) is O(1013 − 1014)GeV. For

our purposes, we will assume HI ∼ 1012 − 1013 GeV for our solutions to be consistent

conservatively, as will be seen later. For larger values of HI , it is still possible for our

solutions to be consistent but less parameter space is available. As stated earlier, the

coefficients ci1 depend on the concrete model of inflation and can be of either sign. If they

turn out to be positive and O(1), then from (3.1) it is clear that the effective mass-squared

parameter for all the moduli (M eff
Xi

)2 = M2
Xi

+ ci1H
2
I is positive and & O(H2

I ). However,

a negative sign for ci1 is possible for non-minimal couplings between the inflaton and the

relevant field, which is in fact a generic possibility within string theory. In this case, the

effective mass-squared parameter for the moduli are given by:

(
M eff
Xi

)2
= M2

Xi
− |ci1|H2

I (3.2)

As explained in section 2.1, the complex structure (Ui), dilaton (S) and open string moduli

(Vi) naturally obtain masses of O(1016)GeV. Therefore, the effective mass-squared param-

eter for these moduli (M eff
Xheavy

)2 is still positive and they settle down to the true (late

time) minima in about a hubble time. They are thus not displaced from their true minima

during inflation. The masses of the throat moduli (Yi) are O(1011 − 1012) GeV. So their
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fate depends more on the concrete model of inflation and the magnitude of the cYi
1 in par-

ticular. For negative ci1 slightly small in magnitude for some reason (. 0.1), the moduli Yi
will not be displaced, otherwise they will. Finally moving on to the light moduli, which we

denote by Xlight in general, we see from section 2.1 that they have masses of O(m3/2), i.e.

of & 10 TeV.11 Therefore, these moduli will generically be displaced from their true minima

for a wide range of ci1. As will be shown later, our final conclusions regarding the baryon

asymmetry and dark matter will not change whether or not the moduli Yi are displaced,

as long as the light moduli Xlight are displaced during inflation. Therefore, for simplicity

and concreteness, it will be assumed that all the heavy moduli (mXheavy
≫ m3/2) settle in

their true minima and the light moduli Xlight are displaced from their true minima by a

large amount.

The situation with sneutrinos is quite interesting. As explained in section 2.2, many

BSM models for new physics arising from string constructions have a U(1)B−L symmetry

with three families of right-handed neutrinos (and sneutrinos in a supersymmetric model).

In such constructions, for the right handed neutrinos and sneutrinos to receive a majorana

mass term, the U(1)B−L symmetry needs to be broken. However, until recently it has

proven difficult to break the above symmetry in the desired manner without not producing

other undesirable effects such as dangerous B and L violating operators at the same time.

It was recently shown in [25] that under certain conditions, the perturbatively forbidden

majorana mass term could be generated in a natural way by stringy non-perturbative ef-

fects (see section 4 for details). These non-perturbative effects arise from euclidean brane

instantons; hence the majorana masses generated from these effects are exponentially sup-

pressed. The scale at which the gauged U(1)B−L is broken is roughly the string scale,

giving rise to a mass for the B − L gauge boson of O(Ms). This gives rise to a mass term

in the superpotential for the right-handed neutrinos (the third term in the expression for

the superpotential in (2.2)). The majorana masses are given by:

Mab
N ≡ λ vB−L = eK/2

∑

r

drad
r
b e

−S(M),r
E3 (Tm)mp (3.3)

where λ is a dimensionless coefficient, dra, d
r
b are constants generically of O(1), and S

(M),r
E3 ,

the action of the rth instanton, is (classically) equal to the world-volume of the instanton.

For details, refer to section 4.2. To generate majorana masses for three right-handed

neutrinos, three or more contributing instantons are required. Since the world-volume of

each instanton will in general differ by O(1), the flavor structure above implies that there

will generically be a hierarchy among the right handed majorana mass eigenvalues. This

implies that it is very natural for the heaviest right-handed sneutrino Ñ3 to have a mass

greater than HI (∼ 1012−13 GeV), implying (from arguments in the previous paragraph)

that it is not displaced from its true (late-time) minimum during inflation. The other

sneutrinos may or may not be displaced depending on their masses and the magnitude and

sign of the coefficient ck2 . However, the desired baryon asymmetry can only be generated if

the heaviest right-handed sneutrino does not get displaced during inflation. Therefore, we

11in order to solve the moduli problem, see section 3.4.
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will only focus on the heaviest right handed sneutrino and assume that it is not displaced

from its true minimum.

Since the heaviest right handed sneutrino (Ñ3) is naturally expected to settle to its

minimum during inflation as argued above, one can integrate out Ñ3 and consider the

corresponding LHu direction (giving the lightest left-handed neutrino mass), which be-

comes a flat-direction as it only gets contributions from supersymmetry breaking and non-

renormalizable operators. The lowest dimension operator involving the LHu flat direction

is κLHuLHu
M as mentioned in section 2.2.12 It is worth noting, that even though this opera-

tor violates B−L, it does preserve R-parity. We now turn to the evolution of flat-directions

during inflation, focussing on the LHu direction, also denoted by φ, in particular.

The fate of flat directions during inflation also depends on the coefficient of the Hubble

induced mass term (c3). However, since the flat-directions have gauge and yukawa couplings

to other matter fields, one also needs to take into account the effect of renormalization

(RGE) from the scale at which they are introduced (typically the compactification scale in

string compactifications ∼ MGUT, Ms) to lower scales (∼ HI). So, it could happen that

RG effects could make the effective mass-squared parameter (meff
φ )2 negative at some scale

Qc even if c3 is positive O(1) [26]. As argued in [26], the LHu direction is most likely

to develop a negative mass-squared parameter for a wide range of c3 (both positive and

negative) due to RG evolution because of the large top yukawa coupling. The LHu direction

has other advantages as well in addition to providing a mechanism for generating the B−L
asymmetry and giving rise to viable neutrino masses. Once the LHu direction is displaced,

most flat-directions (in the MSSM) are lifted at the renormalizable level so that only the

LHu direction needs to be considered for further analysis. Finally, the LHu direction is free

from the Q-ball problem, to be discussed in section 3.2.2. Therefore, the LHu flat-direction

is the most natural and robust candidate for generation of the baryon asymmetry.

To summarize, the heavy moduli, the heaviest right handed sneutrino and most flat-

directions settle down in their true minima very quickly while the light moduli and the

LHu flat direction (corresponding to the lightest left-handed neutrino) are displaced from

their minima by a large amount of O(HI). For the light moduli, naively one might think

that their post-inflationary evolution is fraught with the overshoot problem [27]. However,

as was argued in [23, 28, 29], in the presence of matter or radiation (which is true in

the present case) the fields can be easily guided towards the global minimum without

overshooting. Thus, there is no overshoot problem in this framework. We now study the

post-inflationary evolution of the LHu flat-direction in detail.

3.2 Post-inflationary evolution

Let us study the potential (3.1) in more detail, with particular attention to the LHu di-

rection and Ñ3. The analysis of this section is similar to the one in [7, 8] which was the

first to look at the evolution of the LHu flat direction with a gauged U(1)B−L in a system-

atic manner. However, there are some important differences. The origin of the U(1)B−L

12This could arise by itself (“weinberg” case) and/or by integrating out right-handed neutrinos (“see saw”

case).

– 13 –



J
H
E
P
0
5
(
2
0
0
9
)
0
8
3

breaking and that of the mass of the U(1)B−L gauge boson is different leading to some

subtle differences in the analysis; the generation of left-handed and right-handed neutrinos

uses a different mechanism leading to different mass-scales; and finally, the embedding of

the baryon asymmetry generation mechanism in a complete string framework gives rise to

different regions of allowed parameter space relevant for neutrino masses. In the following,

we will only outline the important steps here and leave a detailed analysis to appendix C.

The scalar potential for these fields can be schematically written as:

V = Vsusy + VD + Vhubble + Vsoft (3.4)

The (normalized) superpotential for the canonically normalized L̂, Ĥu and N̂3 is given by:

Ŵ = ĥN̂3L̂Ĥu + M̂N N̂3N̂3 +W ′
(
ψi, L̂, Ĥu, N̂3

)
(3.5)

ψi stand for fields charged under U(1)B−L (in addition to the MSSM and right handed

neutrino fields) with charge qi. W
′ contains terms depending on ψi alone as well as terms

containing cross-couplings between ψi and {L̂, Ĥu, N̂3}. The mass parameter for N̂3 arises

when the B −L gauge symmetry is broken. Since B−L is broken at vB−L ∼Ms, one can

write M̂N as M̂N = λ vB−L ∼ λMs with λ a dimensionless coefficient. In the presence of

a U(1)B−L gauge symmetry, a non-trivial contribution from the U(1)B−L D-term arises,

and is given by:

VD =
g2
B−L
2

(
| ˆ̃N |2 − | ˆ̃L|2 +

∑

i

qiψi∂iK −
〈

1

4π2
∂TmK

〉)2

(3.6)

where K is the Kähler potential. The last term in (3.6) depends on Tm and behaves as an

effective Fayet-Iliopoulos (FI) parameter once Tm gets a vev (its origin will be explained

in section 4). Tm is precisely the modulus which appears in the mass parameter for ˆ̃N3

(see (3.3)). It is assumed that Tm is stabilized by a combination of effects such as higher

order corrections to the kähler potential and/or moduli trapping. As explained in the

previous section, the mass of the heaviest right handed sneutrino (M̂N ) can naturally be

greater than the hubble parameter during inflation (HI). Thus, ˆ̃N3 quickly settles down

to its minimum during inflation. The minimum is approximately given by:

〈 ˆ̃N3〉 ≈ −O(1)
ĥ ˆ̃LĤu

M̂N

(3.7)

The above expression for ˆ̃N3 can be substituted in (3.4) to generate a potential for the

LHu flat direction, obtained by substituting the neutral components of the L̃ and Hu

fields with φ. One might worry that the large D-term contribution in (3.6) will destroy

the flatness of φ. However, the fields ψi in (3.6) will shift in general to make the D-term

vanish and minimize the potential. This is justified since the curvature around the D-term

potential is of O(M2
s ) which is much larger than that of the F -term potential. This has

been shown explicitly in appendix C. Thus, φ can remain approximately flat and obtain
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a large expectation value during inflation. After integrating out ˆ̃N3 and other fields like

ψi, ψ̄i, one gets the following expression for the potential for φ:

V (φ) = V0 − c2φH
2|φ|2 + k2

φH
2 |φ|4
M2
s

+ O(1)
H2|ĥ|2|φ|4
|λ|2M2

s

−O(1)

(
aH

ĥ2φ4

λMs
+ h.c

)

+O(1)
|ĥ|4|φ|6
|λ|2M2

s

. . .+

(
m2
φ|φ|2 +

ĥ2(n−3) Am3/2γφ
n

nλn−3Mn−3
s

+ c.c

)
+ · · · (3.8)

where V0 is the φ-independent contribution, {c2φ, k2
φ, a,A} are dimensionless coefficients

typically of O(1). “. . . ” stands for higher order terms proportional to powers of ( ĥλ) and

( ĥ
2

λ ), among others. We consider the case in which ( ĥλ) and ( ĥ
2

λ ) are suppressed so that it is

possible to neglect those terms. In section 4.2, it will be argued that these can be naturally

achieved. We will also see later that in order to produce the required baryon asymmetry,

one needs a very small value of ( ĥ
2

λ ). Thus, terms proportional to ( ĥ
2

λ ) are required to be

suppressed for consistency.

It is worthwhile to understand the origin of the various terms in (3.8). The potential

for φ arises from supersymmetry breaking (both hubble induced and hidden sector) and

non-renormalizable terms (after integrating out ˆ̃N3 and ψi, ψ̄i). The terms in the second

line in (3.8) are contributions from hidden sector (soft) supersymmetry breaking which are

much smaller than the hubble parameter during and just after inflation.13 Under the above

conditions, the minimization of the potential (3.8) with respect to |φ| can be simplified:

∂ V

∂ |φ| ≈ −2c2φH
2|φ| + 4k2

φH
2 |φ|3
M2
s

= 0

=⇒ |φ|2 ≈
c2φ
2k2
φ

M2
s (3.9)

Since cφ, kφ are of O(1) (see appendix C), one has:14

|φ| ≈ O(1)Ms (3.10)

Even though terms proportional to ( ĥ
2

λ ) in (3.8) are suppressed, as the hubble parame-

ter decreases after inflation, eventually the fourth and fifth terms (proportional to
(
ĥ2

λ

)
)

in (3.8) will become comparable to the second and third terms. This will happen when:

H ≈ O(1)
ĥ2

λ
Ms ≡ H0 (3.11)

Remember that Ms is greater than HI . Thus, for solution (3.10) to be consistent, one must

have Ms > HI > H > H0. This is possible since we have h2

λ ≪ 1. It will be argued in

section that values of h2

λ ≪ 1 are quite natural in string constructions where the majorana

mass of neutrinos arises from string instantons. In the regime Ms ∼ vB−L > HI > H > H0,

13As mentioned earlier, we are considering “natural” high scale inflation with low scale supersymmetry.
14One needs |φ| . Ms for consistency of the solution, see appendix C.
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the dominant contribution to the potential for the phase of φ (φ = |φ| eiθ) in (3.8) is

given by:

V (θ̂) ≈ m2
θ̂
|θ̂|2; θ̂ ≡ |φ|θ

where m2
θ̂
≈ HI

M
|φ|2 ≈ O(1)

ĥ2

λ
MsH < H2 (3.12)

Thus, θ̂ is not settled at the minimum of its potential during inflation and just after

inflation. When the hubble parameter drops to ∼ H0 such that m2
θ̂
∼ H2

0 , the hubble A-

term in the potential can kick φ in the phase direction providing a torque. This is crucial

for generating the baryon asymmetry, as we will now argue.

3.2.1 Generation of lepton number

After the end of inflation, the Universe is dominated by the coherent oscillations of the

inflaton making it matter dominated. This means that the scale factor R goes like H−2/3

and H keeps decreasing after inflation. We will assume that the production of lepton

number takes place in this epoch, justifying it in the next subsection 3.2.2.

After inflation, in the regime vB−L > HI > H > H0, |φ| ≈ vB−L ∼ Ms as shown

above. The phase of φ is displaced from its minimum during this regime. When H drops

to values such that H ∼ H0, the curvature of the potential along the phase direction

becomes comparable to H, and thus the hubble A-term provides a torque to the phase of

φ. After this time, ( ĥ
2

λ )2 |φ|6
4M2

s
> {k2

φH
2 |φ|4
M2

s
, |a|H ĥ2

λ
|φ|4
Ms

sin (arg(a) + 4arg(φ))} This implies

that |φ| ≈
√
MH for H0 > H > Hosc where M ≡ λMs

ĥ2
. Here, Hosc corresponds to the

time when |φ| starts oscillating about its true minimum. The value of Hosc is determined

by a combination of susy breaking effects and thermal effects (more on this in the next

subsection 3.2.2). As shown in [7], |φ| drops as Hα (α & 1) for H . Hosc.

The lepton number density (nL) related to φ is given by:

nL =
1

2
i
(
φ̇∗φ− φ∗φ̇

)
(3.13)

As already explained above, for vB−L > HI > H > H0, the phase of φ is displaced from

its minimum and no lepton number is generated. For H0 > H, the time evolution of nL in

the expanding universe for potential (3.8) is given by:

ṅL + 3HnL ≈ H

M
Im(aφ4) +

mφ

4M
Im
(
Aλφ4

)
+ · · · (3.14)

The total lepton number NL ≡ R3 nL is therefore given by:

NL(t) ≈
∫ t

dtR3

[
2H

M
|a||φ|4 sin (arg(a) + 4arg(φ))

+
mφ

2M
|A||λ||φ4| sin (arg(A) + arg(λ) + 4arg(φ))

]
(3.15)
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For H0 > H > Hosc, one has:

R3H|a||φ|4
M

∼ |a|MH ∼ |a|M
t

R3mφ|Aλ||φ|4
M

∼ |Aλ|mφM (3.16)

Also, the argument of the sine function of both terms in (3.15) oscillates with a frequency

f ∼ H, since mθ̂ ∼ H in this regime. Thus, the lepton number at H ∼ Hosc is given by:

NL

(
t ∼ H−1

osc

)
∼ O(1)

(
M log

(
H0

Hosc

)
+ (mφM)

(
H−1

osc −H−1
0

))
(3.17)

For later times (Hosc > H), assuming the most conservative case that |φ| damps as Hα

with α ≈ 1, we have:

R3H|a||φ|4
M

∼ H3

M
∼ 1

M t3

R3mφ|Aλ||φ|4
M

∼ H2mφ

M
∼ mφ

M t2
, (3.18)

implying that lepton number production is strongly suppressed for H < Hosc. This means

that the total lepton number is fixed when H ∼ Hosc, giving rise to (3.17) for the total

lepton number.

3.2.2 Satisfying all constraints

The above result is quite interesting; however some implicit conditions need to be satisfied

for it to hold. First, early oscillations of φ have to be avoided so that the lepton asymmetry

is not suppressed (this has been implicitly assumed in the previous subsection. Also, as

assumed one has to show that the production of lepton asymmetry takes place in the

inflaton matter-dominated era, i.e. before the reheating process is completed.

The above constraints can be encapsulated in the following set of conditions:

H0 > Hosc & Γinf (3.19)

Hosc is determined by a combination of thermal effects and supersymmetry breaking effects,

as explained in [8]. The dominant supersymmetry breaking effect is just given by the soft

mass term for φ — mφ ∼ m3/2. Also, although we have assumed the energy density is

dominated by the inflaton during the inflaton oscillation era, there is still a dilute plasma

in this regime with a temperature given by:

T =

[(
T inf
R

)2
mpH

]1/4

(3.20)

where T inf
R is the reheat temperature after inflation. This dilute plasma gives rise to two

classes of thermal effects — a) A thermal mass term for φ ((mth
φ )2 ∼ ckf

2
kT

2) is induced

when the fields which couple to φ have an effective mass fk|φ| < T , giving rise to a

potential contribution V1 ∼ (mth
φ )2|φ|2. b) Another thermal contribution to the potential
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arises because the SU(3) gauge symmetry remains unbroken along the LHu direction and

down type (s)quarks are also massless along this direction. This gives rise to an effective

potential V ∝ g2
sT

4. However, because the RG evolution of gs depends on the effective

masses (∼ fk|φ|) of fields ψk which are coupled to φ, this implies a potential contribution

V2 ∼ αs T
4
[∑

yu|φ|>T
2
3T (Ru)

]
log
(
|φ|2
T 2

)
.

After inflation the hubble parameter decreases and eventually the negative hubble-

induced mass term in the potential for φ is surpassed by the above contributions, i.e.

H2 . m2
φ +

∑

fk|φ|<T
ckf

2
kT

2 + α2
s(T )

T 4

|φ|2 (3.21)

which sets the value ofHosc. The second term in (3.22) gives rise to two sub-cases depending

on whether fi is small or large [30]. More precisely, one finds

Hosc = max

[
mφ,Hi, αsT

inf
R

(mp

M

)1/2
]

where Hi ≡ min

[
mp(T

inf
R )2

f4
i M

2
,

(
c2i f

4
i mp

(
T inf
R

)2
)1/3

]
(3.22)

where M ≡ λ
ĥ2
Ms as before. In order to avoid early oscillations, H0 > Hosc is required.

From (3.20) and (3.22), this implies:

T inf
R < min

[
mink

{
max

(
fkM

3/2
s

c
1/4
k m

1/2
p

,
M3
s

ckf
2
k (mpM3)1/2

)}
,

M2
s

αs(mpM)1/2

]
(3.23)

If the mass parameter M ≡ λ
ĥ2
Ms in (3.23) is much larger than Ms, then it is clear that

Hosc is determined by the third term in (3.23). For this, ĥ2

λ ≪ 1 is required. In fact,

it will be shown in the coming sections that ĥ2

λ ∼ 10−12 ≪ 1 is required for producing

the correct baryon asymmetry, which can be obtained naturally in certain classes of string

constructions. Then, for Ms ≈ 1017 GeV and ĥ2

λ ∼ 10−12, the constraint (3.23) gives rise

to T inf
R . 1011−12 GeV. This seems to be quite natural. One also has to check the assump-

tion that the lepton asymmetry is produced during the inflaton oscillation dominated era,

implying the condition Hosc > Γinf . Thus, Hosc > Γinf requires:

T inf
R . αs

m
3/2
p

M1/2

(
90

π2g∗

)1/2

(3.24)

which is again satisfied for T inf
R . 1011−12 GeV and ĥ2

λ ∼ 10−12. Thus, we have shown that

the above constraints can be satisfied easily.

Before moving on to computing the final baryon asymmetry, it is worth mentioning that

the LHu direction is free from the Q-ball problem [7]. Q-balls are non-topological solitons

which arise when the coherent oscillation of a flat-direction is unstable against spatial

perturbations. This typically happens when the potential for the flat-direction is flatter

than the quadratic potential [31]. If Q-balls are formed, then all charges carried by the flat-

direction are absorbed by the Q-ball, hence the baryon asymmetry must be provided by the
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decay of Q-balls, a situation typically disfavored for various reasons. The supersymmetry

breaking mass of the LHu direction, however, has a big contribution from the large top

yukawa coupling making the potential for φ steeper than the quadratic potential, thus

avoiding the formation of Q-balls.

3.3 The Baryon asymmetry

We have seen in the previous subsection that a non-zero lepton number is created during

the inflaton-oscillation dominated epoch. Since the LHu flat-direction also has a non-zero

B − L charge, a non-zero B − L number is also generated. An O(1) fraction of the B − L

number generated above is converted by sphaleron effects to a non-zero baryon number

since the B − L number is generated at temperatures much above the electroweak phase

transition [32]. More precisely, for a model with extra higgs particles, one has:

NB =
24 + 4NH

66 + 13NH
(NB−L) (3.25)

where NH is the number of higgs doublets. Here, it has been implicitly assumed that all

other new particles are much heavier. For an MSSM-like model with two higgs doublets

and in which the sparticles are camparable to the higgs masses, the general expression has

been computed in [33]. For our purposes, it will suffice that an O(1) fraction of B − L

number is converted to B number. As long as the condensate decays through B − L

conserving interactions after the time it starts oscillating, this baryon number is intact

and is insensitive to the details of the decay. This will be assumed to be the case. The

baryon asymmetry (nB
s ) computed from above is, however, diluted by other sources of

entropy production following inflation. The most natural source of such late-time entropy

production is the decay of moduli, alluded to in the Introduction.

As was explained in section 2.1, string compactifications which stabilize the Hierarchy

as well as the moduli at the same time generically contain a lightest modulus (moduli) of

O(m3/2). It is quite natural for the lightest moduli mXlightest
to be displaced from their

minima (see section 3.1). These moduli start oscillating when the hubble parameter drops

to H ∼ mXlight
.15 These moduli evolve as pressureless matter and hence their contribution

relative to the background radiation (from reheating after inflation) grows rapidly. Hence,

they quickly dominate the energy density of the Universe. Also, since these moduli couple

to the visible sector by only gravitational (planck suppressed) interactions, they decay quite

late, very close to the beginning of BBN. Moduli such as Yi,
16 which may be stabilized at

an intermediate scale (HI > MYi > MXlightest
) do not affect the result for the final baryon

asymmetry since that depends only on the entropy production from moduli which decay

last, irrespective of which moduli decay earlier.

The decay of lightest moduli long after inflation produces a lot of entropy and dilutes

15We are ignoring thermal corrections since these are typically quite small for moduli.
16these correspond to the throat moduli in Type IIB compactifications.
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the baryon asymmetry. Therefore, the final baryon asymmetry can be estimated as:

nB
s

(final) ≈ NBR
−3

(
ρXlightest/T

Xlightest

R

)

≈ NBH
2 T

Xlightest

R

3H2m2
p

(3.26)

Using (3.17), we find for the final baryon asymmetry:

nB
s

(final) = O(1)
M T

Xlightest

R

m2
p

(3.27)

where we have used conservatively that log(H0/Hosc) is O(1) in (3.17) and that the second

term in (3.17) is suppressed. This is consistent with all the constraints in section 3.2.2.

We are only concerned with the estimate of the baryon asymmetry, and the above result is

true up to factors of O(1). As argued in section 2.1, mXlight
& m3/2. In order to produce

the desired baryon asymmetry, one requires:

nB
s

(final) ∼ 10−10

=⇒ M ≡ λMs

ĥ2
∼ 1029 GeV (3.28)

Since Ms ∼ vB−L & 1016 GeV for string constructions consistent with standard gauge

unification at MGUT ∼ 1016 GeV, this implies:

(
ĥ2

λ

)
∼ 10−12 for Ms ∼ 1017 GeV (3.29)

This is consistent with the analysis in section 3.2 for the computation of the lepton number

since terms proportional to ĥ2

λ were assumed to be suppressed in the computation. Note

that the requirement of a tiny ĥ2

λ amounts to having a virtually massless lightest left-handed

neutrino (∼ 10−16 eV). We will argue in section 4 that the above requirement for a tiny ĥ2

λ

(and hence a virtually massless lightest left-handed neutrino) is quite natural to obtain in

string constructions in which string instantons generate the required couplings. However,

before doing that it is important to address issues relating to the moduli(gravitino) problem

and the origin and abundance of dark matter within this framework.

3.4 Moduli (gravitino) problem and non-thermal dark matter

We first address the moduli and gravitino problems within this framework. It is known

that if the displaced light moduli have masses & 10 TeV, then their decay reheats the

Universe to temperatures above a few MeV (assuming planck suppressed interactions),

allowing BBN to occur successfully. Within gravity mediation, the mass of the lightest

modulus (moduli) is comparable to that of the gravitino as explained in section 2.1. The

precise spectrum depends on model-dependent details. One has to be careful, however,
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about the overproduction of gravitinos from the decay of the lightest modulus, if kinemat-

ically allowed. This could create problems for BBN as well as give rise to too much dark

matter from their decays [34]. However, this problem can be elegantly solved if the lightest

modulus (scalar field) X0 has mass mX0 ≈ m3/2 & 10 TeV. As explained in section 2.1,

such fields are naturally available since there exist moduli which are not stabilized solely

by non-perturbative effects. In addition, constructions in which supersymmetry breaking

is triggered by matter scalar fields in a dynamical supersymmetry breaking (DSB) sector,

also give rise to mX0 ≈ m3/2 [19]. Therefore, the gravitino problem is naturally avoided

as the decay of X0 to the gravitino is not allowed kinematically. A similar mechanism

is operative in the M theory framework studied in [23]. X0 decays last and the baryon

asymmetry is determined by the reheat temperature of X0. As mentioned above, as long

as mX0 ≈ m3/2 & 10 TeV, TX0
R is bigger than a few MeV allowing BBN to proceed in the

usual manner.

Within gauge mediation (presumably embedded in a string compactification), there

will again be (geometric) moduli coming from the compactification; however their spectra

depends on the concrete embedding and is largely decoupled from low energy phenomenol-

ogy. In this situation, it is natural to expect that the geometric moduli are reasonably

heavier than ∼ 10 TeV implying that they decay well before BBN. However, there is still

the scalar partner of the goldstino (which we denote by S) whose F -term breaks super-

symmetry. In simple and generic models of gauge mediation, the scalar S is a little heavier

than m3/2 given by mS ∼ m3/2 (
mp

Λ ), where Λ is a high scale present in the kähler potential

(see appendix A for details). Since this scalar has much stronger couplings to the visible

sector compared to that of geometric moduli, even for m3/2 . 1 GeV the scalar S could

decay before BBN and reheat the Universe to temperatures above a few MeV [35].

What can be said about the superpartner spectrum and dark matter within this frame-

work? Within gravity mediation, it has been shown that if the modulus which couples to

the gauginos is stabilized from non-perturbative effects, then the mass of the gauginos

is suppressed relative to m3/2 [18]. If in addition, the supersymmetry breaking sector is

sequestered from the visible sector, then the scalars are also suppressed relative to m3/2,

otherwise not. Therefore, the precise superpartner spectrum will depend on these model-

dependent details. It is important to note, however, that even with m3/2 & 10 TeV, it

is naturally possible to have superpartners, particularly gauginos, in the sub-TeV range.

Within gauge mediation, the gravitino is the LSP (m3/2 . GeV) and hence the DM candi-

date. The masses of other superpartners depend on the precise mass scale of the messengers,

but can easily take values in the sub-TeV range.

Finally, we address the issue of the abundance of DM within string compactifications

in general and within the framework considered, in particular. As explained in section 2.1,

stabilizing the moduli and generating a stable hierarchy between the electroweak and planck

scales at the same time requires that at least some of the moduli are light, close to the TeV

scale. Since the Hubble parameter during inflation is typically much larger than the TeV

scale, the light moduli are generically displaced from their minima during inflation and start

oscillating when the hubble parameter drops down such that H ∼Mmoduli. These quickly

dominate the energy density of the Universe. Therefore, within string compactifications
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which stabilize moduli and explain the Hierarchy, the “standard” thermal computation

of relic dark matter abundance has to be modified to take the effects of the moduli into

account. Since the couplings of visible sector fields are determined by (at least some of)

the light moduli, the moduli couple to the visible sector fields and can decay into them.

Within gravity mediation, this means that the light moduli decaying into superpartners

will eventually decay to the LSP (DM candidate). The most important such contribution

will come from the lightest moduli X0. Since mX0 & 10 TeV, the reheat temperature from

decay of X0 is TX0
R ∼

√
ΓX0mp ∼ O(1) MeV, where ΓX0 ∼ m3

X0
m2

p
is the decay width of

X0. Since the thermal freeze-out temperature of DM particles Tχ1

f ∼ mχ

25 ∼ O(1) GeV is

typically much larger than TX0
R , this means that the DM particles produced from decay of

X0 never reach thermal equilibrium, thereby giving rise to a non-thermal abundance of dark

matter. The thermal abundance of dark matter from the thermal plasma after inflation is

greatly diluted by entropy production from decay of the various moduli. Therefore, the non-

thermal abundance generically dominates over the thermal one. Scenarios of non-thermal

Dark Matter which fit within this framework have been explored in [23, 36].

Within gauge mediation, the situation is quite similar except that the gravitino is the

DM candidate and is stable. The decay of geometric moduli before the decay of S will

again greatly dilute the thermal abundance of the gravitinos. The scalar S can however,

decay directly into gravitinos giving rise to a non-thermal abundance of DM,17 similar to

that in gravity mediation. This is due to the fact that the reheat temperature resulting

from the decay of S is T SR & O(10) MeV for “reasonable” values of m3/2 and Λ,18 which

is much smaller than the typical freeze-out temperature T
(3/2)
f of gravitinos implying that

the gravitinos produced never reach thermal equilibrium.

Depending on the details of the particular construction, the yield of DM particles from

the decay of Xlightest could be above or below that of the so-called “critical” density at

T = T
Xlightest

R :

n(c)
χ =

3H

〈σχv〉
|
T

Xlightest
R

(3.30)

If the yield is above the critical yield, the DM particles quickly annihilate until they reach

the critical density above. On the other hand, if the yield of DM particles is below the

critical yield, then the comoving abundance (Yχ ≡ nχ/s) is given by:

Yχ ∼
Bχ
Xlightest

n
(0)
χ

(T
Xlightest

R )3
(3.31)

In both situations, and both within gravity and gauge mediation, the final relic den-

sity depends on the underlying physics determining the coupling of the lightest modulus to

visible sector particles. Therefore, the upper bound on the observed relic density serves as

17If staus are NLSPs, they can also be produced from the decay of S if kinematically allowed. BBN

constraints then typically imply an upper bound for the gravitino mass [35]. The precise value is model-

dependent.
18The precise number is model-dependent and depends on details. See appendix A for more discussion.
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an important constraint on the moduli-matter and moduli-gravitino coupling in string con-

structions. It has been argued that such non-thermal production mechanisms can provide

the correct DM abundance in some string frameworks, such as the one in [23].

4 Microscopics

4.1 U(1)s, anomalies, gauge invariance and brane instantons

In this section, we give a brief account of Type II string constructions in which perturba-

tively absent couplings (forbidden by gauge and global symmetries) can be generated by

stringy effects and which have been studied in the literature. Examples of such couplings

include yukawa couplings, the µ parameter, majorana mass terms for neutrinos and certain

non-renormalizable operators [25]. In this work, we will primarily be interested in right-

handed neutrino majorana masses and the B − L violating “Weinberg” operator leading

to neutrino masses.

Within the setup of Type IIB orientifold flux compactifications with D3/D7 branes

and orientifold planes (in which moduli stabilization is best understood), semi-realistic

matter spectra can be constructed with D3 branes at singularities and/or with D7 branes

wrapping supersymmetric four-cycles. Important consistency constraints arise from the

requirement of tadpole cancellation.19 In particular, in order to have chiral spectra from

D7-branes, the D7-branes must be equipped with a non-trivial magnetic flux on their

world-volume. It is known that a chiral spectrum is anomalous in general. However, it

can be shown that the requirement of tadpole cancellation actually guarantees the absence

of non-abelian gauge anomalies. The cancellation of pure abelian and mixed abelian-non-

abelian(graviton) anomalies is more subtle. The cancellation of these potential anomalies

is guaranteed in string theory by the Green-Schwarz mechanism, as follows.

The action for a D7-brane (D7a) contains a Chern-Simons term (among others) of

the form:

SCS ∼
∫

R3,1×Σa

C4 ∧ F ∧ F (4.1)

where C4 is the RR 4-form in Type IIB string theory and F is a two-form. Taking one of

the F along Σa (part of world-volume flux on D7a) and the other F to be the field strength

of the U(1)a gauge field on D7a, and expanding C4 as:

C4 = Cα2 ∧ ωα + · · · (4.2)

gives under certain topological conditions:

SCS ∼
∫

Σa

ωα ∧ F
∫

R1,3

Cα2 ∧ Fa ∼ α′2 Qaα

∫

R1,3

Cα2 ∧ Fa (4.3)

with Qaα an integer-valued topological charge matrix. The Cα2 ∧ Fa coupling leads to two

effects - a) it provides a Stuckelberg mass term for the U(1)a gauge field, and b) the shift

19this is bascially a generalization of Gauss’s law for fluxes.
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symmetries of the axions (aα ≡ Im(Tα)) which are dual to the RR 2-forms Cα2 are gauged.

The gauged shift symmetry of the axions gives rise to a D-term for the corresponding U(1)s

as in (3.6).

The U(1)a gauge fields which remain massless lie in the kernel20 of the matrix Qαa .

These U(1)s are always anomaly free. For example, in realistic string constructions U(1)Y
must always be massless; so it must lie in the kernel. On the other hand, massive U(1)a
gauge fields could be either anomalous or anomaly free depending on the details. For

anomalous U(1)s, there appears an additional term in the effective action -
∫
R1,3 a

α tr(Fα∧
Fα) which precisely cancels the mixed abelian-non-abelian gauge(graviton) anomalies al-

luded to above. The above coupling is not present for non-anomalous U(1)s since these

are already anomaly free by definition. Non-anomalous massive U(1)s are quite interesting

as they provide a way to reduce the gauge symmetry at low energies without the Higgs

mechanism. A natural example of such a massive anomaly-free U(1) is U(1)B−L. This can

naturally generate majorana neutrino masses and the B − L violating weinberg operator,

as we will see below.

Focussing on string constructions with a U(1)B−L gauge symmetry, we are interested

in the case when the details of the compactification lead to a structure where the two

forms Cα2 (or their duals aα) couple to the U(1)B−L gauge field in such a way as to provide

a Stuckelberg mass term for the gauge field. The massive U(1)B−L still survives at low

energies as a perturbative global symmetry. Therefore, majorana neutrino masses, among

other operators, are forbidden at the perturbative level. However, non-perturbative effects

may exist which violate this global symmetry to a discrete subgroup21 and generate these

operators. Such a non-perturbative effect actually does exist in string theory; it is pro-

vided by (euclidean) brane instantons. Because the effective perturbative U(1)B−L global

symmetry arising at low energies is secretly gauged in string theory, the operator induced

by the brane instantons must respect the underlying gauge invariance. This implies, in

particular, that the non-perturbatively generated majorana mass parameter (MN ) should

transform under U(1)B−L in such a way as to make the operator MN NN U(1)B−L gauge

invariant. This mechanism is quite general and can formally occur in Type IIA, Type IIB,

Heterotic and M theory constructions. Most of the work related to model-building in this

regard is done in Type IIA constructions [38] 22 where it has been shown that there exists

a large set of models satisfying the various criteria required for the above mechanism to

work. Since Type IIA constructions are related by T-duality to Type IIB constructions,

we expect a large set of models incorporating the above mechanism to exist within Type

IIB constructions as well. Assuming this to be the case, we will keep working within the

framework of Type IIB compactifications with D3/D7 branes.23

We briefly describe the microscopic mechanism by which the brane instanton gener-

ates the relevant operators and the conditions which need to be satisfied. In computing the

spacetime interaction mediated by the instanton, one has to integrate over the instanton

20The kernel of a matrix Q is the set of all eignevectors x for which Qx = 0.
21In many cases, it turns out that the discrete subgroup is none other than the usual R-parity [38].
22see [39] for some work in local Type IIB constructions.
23This is because moduli stabilization is best understood in this setup.
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zero modes. The brane instanton relevant in Type IIB compactificatiosn are E3 instantons

wrapping supersymmetric four-cycles in the compact space and invariant under the orien-

tifold projection. In order to contribute to the effective superpotential, the instanton must

have the right structure of zero modes. Generically, one only has universal bosonic zero

modes, those corresponding to the position of the instanton. The fermionic zero modes

are much more important though. The uncharged (under the 4D gauge group) fermionic

zero modes have to satisfy certain conditions to contribute to the superpotential [25]. We

will focus on (chiral) charged fermionic zero modes which are much more interesting and

relevant. Microscopically, these charged fermionic zero modes arise from open strings at

the intersection of the E3 instanton E with spacetime-filling magnetized D7-branes D7i
(and their orientifold images D7′i) present in the construction. The net number of these

zero modes is given by IEi−IEi′ , where IEi is the intersection number between E and D7i.

In order to saturate the integration over the charged fermionic zero modes, the spacetime

interaction must therefore contain insertions of charged (in particular under U(1)s) 4D

fields, giving rise to a superpotential of the following general form:

W ∼ e−SE3 φ1 φ2 . . . φn (4.4)

The action of the instanton is proportional to the volume of the four-cycle which it wraps.

This is measured by a kähler modulus (TE ≡ τE + iaE), whose imaginary part is an axion

aE which shifts as described in the previous section since the D7-branes are magnetized.

Re(SE3) ∼ 2π

gs

Vol(Σ4)

l4s
≡ 2π τE

Im(SE3) ∼ 2π aE (4.5)

From the structure of zero modes and Stuckelberg couplings of the type
∫
Cα2 ∧ Fa, one

can show that under U(1)X =
∑

i U(1)i:

e−SE3 → e−i
P

i (IEi−IEi′)Λi e−SE3

φ1φ2 . . . φn → ei
P

i (IEi−IEi′)Λi φ1φ2 . . . φn (4.6)

Thus the E3-instanton transforms under U(1)X in such a way as to precisely cancel the

transformation of the charged matter fields, making the superpotential in (4.4) U(1)X
gauge invariant. From the low energy effective field theory point of view however, the

U(1)X appears as a global symmetry which is broken by the E3 instanton.24

4.2 Application to neutrinos

We can now apply the above formalism to the special case of majorana neutrino masses and

the weinberg operator with U(1)X = U(1)B−L. This has been done in the literature. The

zero mode structure required to obtain the two operators is different for the two cases [38].

Hence, two different kinds of E3 instantons contribute to the two operators. Depending on

the details of the construction, one or both kinds of instantons may contribute to neutrino

masses. We will look at both of them in detail.
24generally to a discrete subgroup.
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When the structure of zero modes satisfies a certain condition [38], one gets the fol-

lowing operator:

WM = Mab
N Na

RN
b
R

where Mab
N = mp

∑

r

dard
b
r e

−S(M),r
E3 (4.7)

where da,br are model-dependent coefficients of O(1). In general, many instantons (with the

same zero mode structure) contribute to the majorana mass parameter. The summation

in (4.7) illustrates that fact. The flavor structure of (4.7) is such that having three or more

instantons gives rise to three non-zero eigenvalues. Since the volumes wrapped by these

instantons will generically differ by O(1), the three mass eigenvalues of the matrix Mab
N will

generically be hierarchical, as stated in section 3.1[39]. This will thus lead to the following

left-handed neutrino masses:

Mab
L (seesaw) = 〈H0

u〉2
(
hT M−1

N
h
)ab

(4.8)

The Weinberg operator, which requires a different structure of zero modes [38], is

given by:

WW = κ
LHuLHu

mp

=⇒ Mab
L (weinberg) =

〈H0
u〉2
mp

∑

r

carc
b
re

−S(W ),r
E3 (4.9)

Again, many different instantons (with the same zero mode structure) could contribute to

the left-handed neutrino masses and naturally lead to small left-handed neutrino masses.

As mentioned above, depending on the details one or both kinds of instantons may

contribute to the neutrino masses. It could also happen that one may dominate the other.

Note however, that in string vacua with NR’s massless at the perturbative level, one def-

initely requires instantons to make the NR’s massive at a phenomenologically acceptable

level. Therefore, here we will assume that both kinds of E3 instantons discussed above

exist. In the explicit string constructions considered in [38], such examples were found

in large number.25 We will consider both cases where the instanton generating majorana

masses dominates over the one generating the weinberg operator and vice versa, and argue

that it is naturally possible to obtain the required value of ( ĥ
2

λ ) in both cases. Also, since

we are primarily interested in the baryon asymmetry, we will mostly focus on the lightest

left-handed neutrino mass. In section 6, however, a very interesting possibility will be

briefly described in which one has O(TeV) right handed neutrinos consistent with high-

scale affleck-dine leptogenesis and the moduli problem. Potential consequences of these for

Dark Matter and the LHC will also be briefly discussed.

Before moving on to the details, we would like to comment on the flavor structure of

the neutrino mass matrix. The detailed flavor structure is model-dependent; however some

25Large number of models were found after satsifying a relaxed constraint on the symmetries of the

instantons which can easily occur in the presence of fluxes [38].
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general aspects of the flavor structure within this context have been studied in [40] where it

was shown that it is possible to incorporate a flavor structure for the neutrino mass matrix

consistent with observations with reasonable assumptions. Since we are not interested

in the detailed flavor structure for our purposes, for concreteness and simplicity we will

assume the “normal hierarchy” case with sequential dominance [41]. This is also natural

from a theoretical point of view since the different instanton contributions are naturally

hierarchical as argued above. In fact, within the paradigm of sequential dominance, it is

quite natural to have only two instantons dominantly give rise to the observed neutrino

masses and mixings making the lightest left-handed neutrino virtually massless [40, 41].

This is precisely what is required for achieving a large enough baryon asymmetry within

the framework studied here. It has to be kept in mind though that other flavor structures

are also possible. Those can also be probably incorporated within this framework.

4.3 Microscopic constraints to obtain a small h2

λ

In this subsection, we will look at the computation of the lightest neutrino mass in detail.

The expression for the left-handed neutrino mass matrix was given in (4.8) and (4.9). How-

ever, those expressions are not canonically normalized. One has to be careful in properly

normalizing the matter fields such as to give rise to a canonical kinetic term for these fields.

This is especially important within supergravity since the Kähler potential for these fields

is non-canonical in general. In general, if the (un-normalized) superpotential is given by:

W = Mαβφαφβ + Yαβγφαφβφγ +
καβγδ
mp

φαφβφγφδ + · · · , (4.10)

then the canonically normalized quantities in W above are [42]:

M̂αβ = eK/2Mαβ(τm)

Ŷαβγ = eK/2
Yαβγ(Um)

(K̃αK̃βK̃γ)1/2(τm, Um)
≈ eK/2

Yαβγ(Um) (g−1
α g−1

β g−1
γ )(Um)

(K̃0
αK̃

0
βK̃

0
γ )

1/2(τm)
(no sum)

κ̂αβγδ = eK/2
καβγδ(Um)

(K̃αK̃βK̃γK̃δ)1/2(τm, Um)
≈ eK/2

καβγ(Um) (g−1
α g−1

β g−1
γ g−1

δ )(Um)

(K̃0
αK̃

0
βK̃

0
γK̃

0
δ )

1/2(τm)
(no sum)

(4.11)

In the above, we have shown the moduli dependence of the various parameters and

have used the fact that the kähler metric K̃α for matter fields φα can be factorized as

K̃α(τm, Um) = K̃0
α(τm) gα(Um).26 Applying the above formulas to the majorana mass op-

erator and the weinberg operator, one gets the following contributions to the left-handed

26For simplicity, we have also assumed that the kähler metric is roughly diagonal, i.e. K̃ᾱβ ≈ K̃αδαβ .

This will not change the main conclusion in the analysis.,Conlon:2007dw
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neutrino mass:

M̂L
(νab)

(seesaw) = O(1)
〈H0

u〉2
mp

eK/2

K̃0
LK̃

0
Hu
K̃0
N3

(hD
T hD)(∑

r d
r
ad
r
b e

−S(M),r
E3

)

M̂L
(νab)

(weinberg) = O(1)
〈H0

u〉2
mp

eK/2

K̃0
LK̃

0
Hu

(
∑

r

crac
r
b e

−S(W ),r
E3

)
(4.12)

Here, we have used the fact that generically K̃α(τm, Um) = O(1)K̃0
α(τm) and have also used

a diagonal neutrino yukawa coupling for simplicity (h ≈ hD). One can further simplify the

above expressions if one assumes that the various instantons contributing to the operators

above are hierarchical, which we have argued to be quite natural. Thus, the sum over the

instantons in both operators in (4.12) above is dominated by only one instanton. Using the

fact that typically cra, d
r
a = O(1), this gives rise to the following expression for the lightest

left-handed neutrino mass:

M̂L
(ν1)(seesaw) = O(1)

〈H0
u〉2
mp

eK/2

K̃0
LK̃

0
Hu
K̃0
N3

(
h1
D

)2(
eS

(M)
E3

)

M̂L
(ν1)(weinberg) = O(1)

〈H0
u〉2
mp

eK/2

K̃0
LK̃

0
Hu

(
e−S

(W )
E3

)
(4.13)

For later purposes, it is useful to write down expressions for the dependence of the

string scale Ms, the kähler potential and the kähler metric on the volume (kähler moduli).

These are given by [44]:

Ms =
mp

V1/2

K = −2 log V + · · ·
K̃φ = τm

−1/2O(1) = V−1/3O(1) (4.14)

where for the kähler metric we have assumed for simplicity that all four-cycles in the Calabi-

Yau are roughly of the same size. Since we are interested in models with standard gauge

unification, a natural choice is MGUT . Ms ∼ 1017GeV, implying that V1/2 = O(10). Also,

for the supergravity approximation to hold, we will require that the moduli are stabilized

at values greater than unity, but still respecting the constraint that V1/2 = O(10). We will

use all this in our subsequent analysis.

4.3.1 Majorana operator domination (see-saw case)

We will first consider the case where the see-saw contribution dominates over that of

weinberg one. From (4.12), this requires:

(
h1
D

)2 ≫ e
−

“

S
(M)
E3 +S

(W )
E3

”

K̃0
N3

(4.15)

In addition, in order to obtain the correct baryon asymmetry (3.29) in this case,

one requires:
(
ĥ2

λ

)

seesaw

=

(
h1
D

)2
eK/2(

K̃0
LK̃

0
Hu
K̃0
N3

)
e
− 2π

gs
τN3

Ms

mp
∼ 10−12 (4.16)
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Here we have used the fact M̂N3 = eK/2e−2πτN3 mp = λ̂Ms, implying λ̂ =
eK/2e

−2πτN3 mp

Ms
.

Using (4.14), one gets:

(
h1
D

)2
e2πτN3 ∼ 10−12V1/2O(1) (4.17)

The value of τN3 is constrained by the requirement that the right-handed sneutrino ˆ̃N3

is not displaced from its original minimum in order to produce a non-zero lepton number

as argued in appendix B. Conservatively, this means that MN3 is larger than the hubble

parameter during inflation, i.e.

M̂Ñ3
≈ MN3 = O(1) eK/2 e−2πτN3 mp & HI

=⇒ e−2πτN3

V mp & HI ≈ 1012 − 1013 GeV (4.18)

This implies that τN3 be close to (but greater than) unity for V1/2 = O(10). This is still

consistent with the supergravity approximation.

The un-normalized yukawa couplings hD arise from multiply wrapped world-sheet

instantons and are given by products of Jacobi theta functions [45]. These can be well

approximated as hijkD ≈ O(1)e−η
ijk4πUm where ηijk = O(1). These yukawas depend on

the complex structure moduli (Um) in Type IIB string theory which are stabilized by bulk

fluxes and can take a wide range of values depending on the fluxes. From (4.17) and (4.18),

one finds that (h1
D)2 & 10−15. This can be naturally obtained by Um = O(1)(but greater

than unity).27

Also, the condition (4.15) that the majorana operator dominates the weinberg operator

gives rise to a constraint on τW . Using (4.17), the condition (4.15) gives:

e−2πτW ≪ 10−10

=⇒ τW & 3.6 (4.19)

which can again be satisfied naturally. Finally, we have to check that for the above choice of

parameters the quantity ( ĥλ ) is suppressed as has been assumed in the analysis of section 3.2.

One finds that:
(
ĥ

λ

)

see saw

=
(h1
D)

(
K̃0
LK̃

0
Hu
K̃0
N3

)1/2
e−2πτN3

Ms

mp
. 10−3 (4.20)

which is adequately suppressed.

4.3.2 Weinberg operator domination

We now turn to the other case. This gives:

(h1
D)2 ≪ e

−
“

S
(M)
E3 +S

(W )
E3

”

K̃N3 (4.21)

27The O(1) factors at various places allow multiple ways of satisfying the constraint.
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In order to obtain the correct baryon asymmetry in this case, one requires:

(
ĥ2

λ

)

weinberg

=
eK/2

K̃LK̃Hu

e−2πτW
Ms

mp
∼ 10−12

or
e−2πτW

V5/6
∼ 10−12; using (4.14)

=⇒ τW ≈ 3.5 − 4 (4.22)

The requirement for the majorana mass of Ñ3 is the same as in the previous case:

M̂Ñ3
≈ M̂N3 = O(1) eK/2 e−2πτN3 mp & HI

e−2πτN3 & 10−4 (4.23)

again leading to τN3 close to (but greater than) unity. Using (4.22) and (4.23), the condi-

tion (4.21) for weinberg operator domination gives:

(
h1
D

)2 ≪ 10−16

V1/2
≈ 10−17 using (4.14) (4.24)

So, using hijkD ≈ O(1)e−η
ijk4πUm where ηijk = O(1), one finds that (4.24) requires Um & 1.5.

Finally, one can estimate:

(
ĥ

λ

)

weinberg

∼
(
h1
D

)
(
K̃0
LK̃

0
Hu
K̃0
N3

)1/2
e−2πτN3

Ms

mp
≪ 10−4 (4.25)

which is consistent with our assumption.

Thus, we find that the range of the values of the stabilized moduli in both cases are

different from each other. Nevertheless, both sets of ranges are perfectly natural to obtain

from perturbative string compactifications which are consistent with the supergravity ap-

proximation and a compactification scale close to the unification scale MG. Finally, it is

important to remember that it could happen that both contributions to neutrino masses

are comparable to each other. A much bigger parameter space for the stabilized values

of the moduli opens up in the general case, although the analysis is more complicated.

Qualitatively however, the analyses in the previous subsections show that it is possible to

obtain the required baryon asymmetry with moduli fixed in the supergravity regime and a

small neutrino yukawa coupling.

5 Other string/M theory compactifications

In this work, we have mostly focussed on Type IIB compactifications. However, as long

as the relevant microscopic criteria are satisfied, the mechanism described in this paper

could work in other kinds of string/M theory compactifications which stabilize the moduli

and generate the Hierarchy at the same time. One such example in which it is naturally

possible to achieve the above is M theory compactifications studied in [12]. Examples in

other corners of string/M theory may exist as well. Within M theory compactifications,
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it was shown in [12] that with some reasonable assumptions, strong gauge dynamics in

the hidden sector can stabilize all the bulk moduli as well as generate the Hierarchy in a

natural manner in a de Sitter (dS) vacuum. Supersymmetry breaking is mediated to the

visible sector by gravity. The moduli spectra can then be computed reliably and it turns

out that the lightest moduli have masses MXlightest
≈ m3/2 which decay close to (but earlier

than) BBN generating a large amount of entropy [23]. Therefore, the microscopic criteria

required in order to produce the correct baryon asymmetry by the Affleck-Dine mechanism

in this case are precisely the same as in the Type II case. Also, since m3/2 can naturally

be greater than ∼ 10 TeV and supersymmetry breaking is mediated by gravity, there is no

moduli (gravitino) problem within this framework. It is known that M theory compactified

on a singular seven dimensional space with G2 holonomy is dual, in different regions of its

moduli space, to both heterotic string theory on an appropriate Calabi-Yau [52] and Type

IIA string theory on another appropriate Calabi-Yau with D6-branes and O6-planes [53].

Since many examples of heterotic and Type IIA string models with an SM×U(1)B−L gauge

group and an MSSM-like chiral spectrum (with right-handed neutrinos) exist in literature,

this means that in principle this is possible in the M theory constructions as well. Finally,

masses, yukawa couplings and non-renormalizable terms like the Weinberg operator in M

theory arise from membrane instantons connecting the various superfields [52, 53]. So, the

appropriate zero-mode structure has to be satisfied in order for the instantons to contribute

to the relevant terms in the superpotential, similar to that in Type II constructions. It

would be extremely interesting to have explicit constructions satisfying the above criteria.

6 Potential consequences for observable physics

It would be very interesting to look for possible signals in particle physics and cosmology

experiments in order to test the ideas proposed in this paper. Although precise details

are model-dependent, one can still make general observations which are nevertheless quite

interesting. As already pointed out in section 3.4, the framework generically predicts a non-

thermal mechanism for the production of Dark Matter. One consequence of this is that

DM candidates with a much larger annihilation cross-section,28 compared to that required

for a standard thermal relic abundance, are allowed [23]. This is essentially because the

final relic abundance is set by the physics of the late-decaying scalar. This result is quite

intriguing in the sense that a DM interpretation of recent results from DM indirect detection

experiments like PAMELA and ATIC also require much larger annihilation cross-sections.

If the DM interpretation survives, it might be taken as a possible hint for non-thermal

Dark Matter.29

Within this framework, a very interesting possibility could exist in which one could

have O(TeV) right-handed neutrinos compatible with the production of baryon number at

times much earlier than that of the electroweak phase transition. Moreover, the O(TeV)

right-handed neutrino will not be accompanied by a low energy U(1)B−L. Although such

a light right-handed neutrino is not a definite prediction of the framework, it is quite

28by a factor of upto O(1000).
29Other explanations are also possible.
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interesting and hence worth some attention because it has consequences for Dark Matter

as well as the LHC.

As already explained, the right-handed neutrino masses are naturally hierarchical since

they are suppressed exponentially relative to one another. Therefore, it is quite possible to

have the lightest right-handed neutrino to be light, near the electroweak scale. Depending

upon which operator (majorana or weinberg) is dominantly responsible for the heaviest

left-handed neutrino mass (for which there is an experimental upper bound), different

parameter spaces are available for the stabilized values of the moduli such that the lightest

right-handed neutrino is around the electroweak scale.30 If both operators are comparable,

a much bigger parameter space opens up. The requirement that the lightest right-handed

neutrino be around the electroweak scale implies:

M̂N1 = O(1)
e−2πτN1 mp

V ∼ 102 GeV

=⇒ τN1 ≈ 5.1 (6.1)

Note that the above could be true irrespective of which operator, majorana or weinberg, is

responsible for the lightest left-handed neutrino massMν1 and hence the baryon asymmetry

nB/s. Thus, it is possible31 for the baryon asymmetry to be produced much before the

electroweak phase transition while still having an electroweak scale right-handed neutrino.

If such a light right-handed neutrino exists, it has interesting consequences for the

LHC as well as Dark Matter. To understand this better, it is useful to write the relevant

interactions. Assuming that the neutrino yukawas are roughly diagonal as before, we can

write the relevant interactions containing the lightest right-handed neutrino as:

W ⊃ ĥ3N̂1L̂3Ĥu + M̂N1 N̂1N̂1

Lsoft ⊃ m̃2 ˆ̃N †
1

ˆ̃N1 +

(
Â3ĥ3

ˆ̃N1
ˆ̃L3Ĥu +

1

2
BM̂N1

ˆ̃N1
ˆ̃N1 + h.c.

)
(6.2)

The first line above corresponds to supersymmetric interactions while the second line cor-

responds to soft supersymmetry breaking interactions.

An important consequence of the above lagrangian is that the lightest sneutrino can

be much lighter than the lightest right-handed neutrino. The reason is that the 2 × 2

sneutrino mass-squared matrix is modified because of the right-handed diagonal mass-

squared contribution (M2
R ≡ M̂2

N1
+ m̃2) and the off-diagonal A-term contribution in (6.2)

(when the higgs gets a vev). RG running from high-scale to low-scale can have important

effects as well. This leads generically to a situation in which the two mass eigenstates

are split by a large amount, leading to an eigenstate with suppressed mass and couplings

compared to that in the MSSM. The Z-width constraint (for sneutrinos lighter than mZ)

can also be satisfied if the lightest eigenstate is predominantly ˆ̃N1. Thus, the possibility of

sneutrino dark matter opens up quite naturally within gravity mediation. A scenario with

similar features for the right-handed neutrino and sneutrino has been studied in [46] but

30remember we have assumed sequential dominance of right-handed neutrinos.
31note that this is a natural possibility but not a concrete prediction.

– 32 –



J
H
E
P
0
5
(
2
0
0
9
)
0
8
3

from a very different theoretical perspective. However, the phenomenological consequences

are quite similar for right-handed neutrinos and sneutrinos. From (6.2), we see that there is

generically also a B−L violating B-term in the soft lagrangian. If for some reason, this B-

term is suppressed compared to the B−L conserving mass terms for the sneutrinos, it will

split the CP-odd and CP-even states by a small amount. This could give rise to an inelastic

sneutrino dark matter scenario which could explain the positive signal at DAMA [47] while

being consistent with the negative results of other direct detection experiments such as

CDMS, XENON, ZEPLIN, KIMS and CRESST. Such a possibility was pointed out in [48].

Of course, within the theoretical framework considered in this paper, one has to come up

with a natural way of obtaining the correct splitting. This is left for future work.

Depending on the precise pattern of masses of the right-handed neutrino and the

sneutrinos, there could also be a wide variety of possibilities for collider physics. For

instance, if the right-handed neutrino is really light - lighter than the SM-like higgs, then

the higgs could preferentially decay to right handed neutrinos which in turn decay to six

particles in the final state [49]. Even if such a decay is kinematically not allowed, the higgs

could decay to ν̃1ν̃
∗
1 since the lightest sneutrino can naturally be quite light as explained

in the previous paragraph. This could give rise to an invisibly decaying higgs which would

make it hard to discover it at the LHC by standard methods, although other channels

may open up which still make it possible [50]. The presence of unsuppressed A-terms can

give non-standard charged higgs decays, with H± decaying to L̃LÑ1. It could also lead to

production of the light (ν̃1) and heavy (ν̃2) sneutrinos which could decay either visibly or

invisibly leading to different signatures. In certain cases, ν̃2 could decay to ν̃1 + h with

a large branching fraction providing an interesting new way to produce higgs particles in

cascade decays which could be comparable to standard channels. Thus, having light right-

handed neutrino and sneutrinos opens up a wealth of possibilities at the LHC. In order to

make more concrete predictions however, one needs to specify an explicit pattern of the

other superpartners such as the gauginos, squarks and the sleptons and then look at the

possible consequences in a systematic manner.

It is important to note that the lightest neutrino mass in this framework is virtually

massless. This property can also lead to observable signals. For example, the rate for

neutrinoless double beta decay depends on the effective mass of the electron-type neutrino

mνee (for majorana neutrinos). If the light neutrinos follow a hierarchical pattern as in

the present framework with the lightest of them being virtually massless, it is possible to

bound mνee from both sides. This could lead to a potential observation in the future. This

is similar to the arguments in [51].

7 Conclusions

The standard paradigm of cosmological evolution consists of a radiation dominated era

resulting from the decay of the inflaton which lasts until well after the end of Big-Bang

Nucleosynthesis (BBN). Within this paradigm, DM particles are created from the thermal

plasma and eventually freezeout giving rise to a thermal relic abundance which has to

be compared with observations. Most models trying to explain the baryon asymmetry
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also work within the above paradigm. However, as we have argued in this paper, within

classes of realistic string compactifications which stabilize the moduli as well as generate

the Hierarchy at the same time, the standard paradigm is no longer applicable. This is

because in such compactifications, there generically exists at least one light modulus which

is comparable to the gravitino mass (within a few orders of magnitude). Since the Hubble

parameter during inflation Hinf is typically much larger than the TeV scale for natural

inflationary models, this modulus is generically displaced during inflation. When the hubble

parameter drops down to the mass of the modulus, the modulus starts to oscillate and

quickly dominates the energy density of the Universe. Since the modulus couples only

very weakly to the matter fields, it decays close to BBN, generating a large entropy and

diluting any pre-existing baryon asymmetry. Thus, most mechanisms explaining the baryon

asymmetry have to take this crucial feature into account.

In this work, we have argued that it is still possible to generate the required baryon

asymmetry in a natural manner within classes of realistic string compactifications with a

minimal extension of the MSSM below the unification scale (only right-handed neutrinos)

and satisfying certain microscopic criteria. This is achieved by a period of Affleck-Dine

leptogenesis from the LHu flat-direction shortly after the end of inflation, which has been

studied earlier in the literature. In this work, we have embedded the above mechanism (with

some important differences compared to the original proposals) in a complete framework

motivated from string theory and addressed all relevant issues starting from the end of

inflation to the beginning of BBN.

Since the LHu flat-direction is obtained after integrating out heavy right-handed majo-

rana neutrinos; therefore the issue of neutrino masses is intricately connected to the baryon

asymmetry. In fact, generating the correct baryon asymmetry requires that the lightest

left-handed neutrino mass is virtually massless, of O(10−16 eV). It is quite interesting that

a virtually massless lightest left-handed neutrino is allowed by data. We have also argued

that it is possible to generate such a light left-handed neutrino mass naturally from string

instantons (satisfying certain constraints). The moduli and gravitino problems can be nat-

urally solved in this framework both within gauge and gravity mediation, although in a

different manner. Because of the decay of heavier moduli before that of the lightest one,

any thermal abundance of DM particles (both in gravity and gauge mediation) is greatly

diluted. Hence, the relic abundance of DM particles comes from the direct decay of moduli.

Since the decay widths depend on the moduli-matter and moduli-gravitino couplings, the

upper bound on the relic abundance provides an important constraint on these couplings.

Since these couplings are themselves determined in terms of the structure of the kähler po-

tential among other things, this may provide important insights about the effective action

arising in a particular framework. It is important to note that it is naturally possible to

have superpartners, particularly gauginos, in the sub-TeV range in this framework (both

within gravity and gauge mediation). The framework also leads to some broad potential

signals for particle physics and cosmology. A non-thermal origin of Dark Matter, which is

quite natural within this framework, may be crucial to explain the recent results of indirect

detection experiments like PAMELA and ATIC. Also, a light right-handed (s)neutrino at

around the electroweak scale is naturally allowed (although it is not predicted). This could
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have very interesting consequences both for Dark Matter direct detection and the LHC.

Finally, the fact that the lightest neutrino is virtually massless could potentially lead to a

positive signal at neutrinoless double-beta decay experiments.

Each of the microscopic criteria required have separately been shown to be satisfied for

explicit constructions and are mutually compatible with each other; it is therefore expected

that these criteria could also be satisfied simultaneously by a sizable fraction within the

sub-landscape of realistic string vacua, providing a solution to all the above problems in

a natural manner. Nevertheless, it would be extremely convincing and useful if one could

have explicit string constructions satisfying most (if not all) microscopic criteria listed

in this paper. This is technically challenging at present, but could be achieved in the

near future.

It is also worth mentioning that given the existence of light moduli decaying close

to BBN in a string-motivated framework, there could be other ways of generating the

required baryon asymmetry compared to the one described here. For example, one could

imagine a scenario in which both the baryon asymmetry and Dark Matter are produced

from the decays of a heavy scalar field dominating the energy density of the Universe

before BBN. Such models have been studied in [54], and it may be possible to embed them

(again maybe with some differences) naturally in a string theoretic framework [? ]. In

principle, this mechanism of producing the baryon asymmetry is distinguishable from the

mechanism studied in this paper. For instance, this may be possible in the presence of

light right-handed (s)neutrinos because of their special signatures for the LHC and DM. It

would be extremely interesting to come up with other ways of distinguishing the different

mechanisms with experimental observables.
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A Lightest “modulus” in gauge mediation

In this section, we will study the lightest scalar field (“modulus”) in gauge mediation.

In accordance with our philosophy the gauge mediation model should be embedded in

a string compactification, although from a conceptual perspective since gauge mediation

models work at parametrically low energies, the details of the compactification and string

embedding should not have much effect on low energy physics. Thus, it is reasonable to

expect that a string embedding will stabilize the geometric moduli with masses much above

the TeV scale implying that they will decay much before BBN even if some of them are

displaced from their minima during inflation. However, there are other scalar fields (which

we also denote by moduli by a slight abuse of notation) whose effects have to be taken into
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account. Many models of gauge mediation exist in the literature, and the precise results

for the masses of light scalar fields will depend on model-dependent details. However, we

would like to argue that there are some generic features which exist in a large class of gauge

mediation models.

Here we study a simple scheme of gauge mediation at low energies which was argued

to be quite generic [35, 55]:

W = W0 + µ2 S − κSf̄f

K = |f |2 + |f̄ |2 + |S|2 − |S|4
Λ2

+ · · · (A.1)

where S is the goldstino superfield which parameterizes supersymmetry breaking, f, f̄

are the messenger fields charged under both the visible and hidden gauge groups, Λ is a

mass scale at which other massive fields have been integrated out and W0 is the constant

piece of the superpotential required to obtain a vanishing (tiny) cosmological constant.

The presence of W0 breaks R-symmetry. A good string embedding should microscopically

account for this constant piece W0.
32 Even though one is studying a scheme for gauge

mediation, one still needs to compute the potential within supergravity as this is the low

energy theory obtained from string compactifications preserving N = 1 SUSY. Within

supergravity, the potential arising from the above superpotential and the kähler potential

has a long-lived metastable supersymmetry breaking minimum at [56]:

〈S〉 ∼ Λ2

mp
; 〈f〉 = 〈f̄〉 = 0;

〈FS〉 ≈ µ2 =⇒ m3/2 ∼ µ2

mp
(A.2)

For Λ & 1013 GeV, this minimum is stable and the masses of the scalars S and the mes-

sengers are given by [56]:

mS ∼ µ2

Λ
; mf,f̄ ∼ Λ2

mp
(A.3)

An upper limit for Λ is mp. In order to find out which of the scalars is lighter, one has to

impose the constraint that the mediation of supersymmetry breaking by gauge interactions

dominates compared to that by gravitational interactions (our original assumption). This

leads to an upper bound on m3/2, m3/2 . O(1) GeV. Using mp & Λ & 1013 GeV from above

and conservatively using the upper bound for m3/2, one finds that mf,f̄ > mS . Thus, S is

generically the lightest scalar in generic models of gauge mediation with a mass:

mS ∼ µ2

Λ
∼ m3/2

(mp

Λ

)
(A.4)

Regarding possible values of Λ, Λ ∼MGUT ∼ 1016 GeV seems to be both theoretically and

phenomenologically [35] interesting implying that mS ∼ 102m3/2, although other values

32after stabilizing the moduli.
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in the above range are presumably allowed. Thus, the lightest scalar in generic gauge

mediation models is a few orders of magnitude above m3/2. Finally, since S is coupled

much more strongly to the visible sector than a gravitationally coupled scalar, it can easily

reheat the Universe to temperatures above a few MeV even for much smaller masses.

B What if ˆ̃
N3 is displaced during inflation?

In this section, we will argue that if ˆ̃N3 is displaced from its true minimum during inflation,

then it is not possible to generate the required baryon asymmetry. During and after

inflation, the dominant (mass-squared) contributions to the potential for ˆ̃N3 are given by:

V =
(
M2
N + c2NH

2 +m2
0

) ∣∣∣ ˆ̃N3

∣∣∣
2
+
[
(B + bNH) MN

ˆ̃N3
ˆ̃N3 + h.c.

]
+ · · · . (B.1)

The parameters b and B can be taken to be real without loss of generality. The above mass

matrix can be diagonalized to give mass eigenstates:

ˆ̃NR =
1√
2

(
ˆ̃N3 + ˆ̃N∗

3

)

ˆ̃NI =
−i√

2

(
ˆ̃N3 − ˆ̃N∗

3

)
(B.2)

with the following eigenvalues:

M2
R,I =

(
M2
N + cNH

2
)
± (B + bH) MN (B.3)

The situation above is quite different compared to that with flat-directions because here

one has renormalizable L violating interactions (the B term) in contrast to those present

in the case of flat-directions. The B term makes the mass eigenstates non-degenerate,

so they will oscillate independently with different frequencies when H ∼ MN . Therefore,

the lepton number created during these oscillations will oscillate in general, in contrast to

that for flat-directions. Depending on whether the hubble-induced B-term b is O(1) or

suppressed (maybe due to a symmetry), one might hope that it is possible to transfer this

lepton number generated for certain ranges of ΓN . This range is determined in terms of

of B and b [57]. However, it turns out that even though lepton number can be stored in

the oscillations of ˆ̃NR and ˆ̃NI for certain ranges of ΓN , it is still not possible to transfer

the lepton asymmetry to the (s)leptons. This is because the coupling of the sneutrino to

left-handed (s)leptons also violates lepton number (due to the B-term). A simple way to

see this is to write the relevant interaction in the mass eigenstate basis:

− Lint = ˆ̃N3

(
ĥ1L̂

ˆ̃̄
Hu + ĥ∗1MN

ˆ̃LĤu
∗
+A ĥ1

ˆ̃LĤu

)
+ h.c.

=
ĥ1√

2

ˆ̃NR

[
L̂

ˆ̃̄
Hu + (A+MN ) ˆ̃LĤu

]
+ h.c +

i
ĥ1√

2

ˆ̃NI

[
L̂

ˆ̃̄
Hu + (A−MN ) ˆ̃LĤu

]
+ h.c (B.4)
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From (B.4), it is clear that the decay widths to (s)leptons and anti-(s)leptons are the

same, and hence no asymmetry can be generated. Therefore, it is crucial for ˆ̃N3 to not be

displaced from its minimum for the desired baryon asymmetry to be generated.

C Technical details for computing the lepton number

In this section, we will study the potential for the flat-direction φ during and after inflation

in detail. As explained in section 2.1, for concreteness we assume that the visible sector at

around the compactification scale Ms (which we assume to be close to the string scale and

the GUT scale and the same as the B − L breaking scale from section)33 consists of the

gauge group G = SM × U(1), while the matter sector consists of that of the MSSM with

three right-handed neutrinos and possibly other (vector-like) exotic fields. These exotic

fields typically get massive at Ms. Some of these exotics could be charged under U(1)B−L.

This is assumed to be the case. The superpotential, written schematically in (3.5), is given

in detail by:

Ŵ = ĥN̂3L̂Ĥu + M̂N N̂3N̂3 + η X
(
ψψ̄ −M2

s

)
(C.1)

Here ψ, ψ̄,X are MSSM singlets and ψ, ψ̄ are assumed to be charged (oppositely) under

U(1)B−L. The third term in (C.1) above just provides one possible mechanism to provide

a mass of O(Ms) for ψ, ψ̄,X, so its precise form is not crucial for us as long as that is

achieved. What is important is the fact that there are fields charged under U(1)B−L which

get a mass when B − L is broken. The full potential is given by:

V = VD + Vsusy + Vhubble + Vsoft

=
g2
B−L
2

(
| ˆ̃N |2 − | ˆ̃L|2 + qψ∂ψK − qψ̄∂ψ̄K − 1

4π2
〈∂TG

K〉
)2

+

|µĤu|2 + |ĥ ˆ̃LĤu|2 + +|µĤd + ĥN̂ L̂|2 + |ĥ ˆ̃NĤu|2 + |ηXψ|2 + |ηXψ̄|2

+|η(ψψ̄ −M2
s )|2 + 3H2

(
∑

Y

(b′Y )|Y |2
)

−H

(
∑

Y

cY YWY + h.c.

)
+ Vsoft(C.2)

Here K is the Kähler potential for the moduli and matter fields (see (2.2)), Tm is the kähler

modulus whose axionic partner shifts under U(1)B−L. Since we have assumed that Tm is

stabilized by effects such as higher order corrections to K or by moduli trapping, the third

term in (C.2) gives rise to an effective FI parameter, ξeff ≡ −Qm

4π2 〈∂TmK〉 where Qm is a

topological charge. The magnitude of the FI parameter is naturally of O(Ms) as will be

argued at the end of this section. The terms in the third line in (C.2) arise from hubble

induced supersymmetry breaking during and after inflation; b′Y and cY are typically of

O(1). Y stands for all the relevant fields {X,ψ, ψ̄, ˆ̃N3,
ˆ̃L, Ĥu, Ĥd}. The contribution from

ordinary hidden sector supersymmetry breaking Vsoft is much smaller than the other terms,

hence it is not written explicitly.

33Although the GUT scale MG is less than the typical string scale Ms by a factor of a few, threshold

corrections can account for the discrepancy.
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The potential (C.2) is quite complicated. In order to make progress, it is convenient

to integrate out heavy fields. This is also relevant because field with masses equal to or

greater than the hubble parameter settle down at the bottom of the potential and track

their respective minima during the subsequent evolution. To this end, we will be interested

in the region of field space in which:

|µ| ≪ H . M̂N < |ψ| . Ms

ĥ|φ| ≪ M̂N (C.3)

where we have introduced the LHu flat-direction φ defined as:

ˆ̃LT =
1√
2

(φ 0) ; ĤT
u =

1√
2

(0 φ) (C.4)

We will see that the solutions obtained are consistent with the above. In this region of field

space, one finds that ψ̄, X, ˆ̃N3 and Ĥd get heavy masses from the F -term contribution to

the potential, i.e. from Vsusy + Vhubble + Vsoft in (C.2). Solving the equations of motion for

these fields, their vacuum-expectation-values (vevs) are respectively:

〈ψ̄〉 ≈ M2
s

ψ
; 〈X〉 ≪Ms; 〈Hd〉 ≪Ms

〈 ˆ̃N3〉 ≈ − ĥ
ˆ̃LĤu

M̂N




(1 −O(1) H
M̂N

)
(

1 + ĥ2(|Ĥu|2+| ˆ̃L|2)
|M̂N |2 + O(1) H2

|M̂N |2

)




≈ −O(1)
ĥ ˆ̃LĤu

M̂N

(C.5)

in accordance with the restrictions on the field-space above. In the above minimum, X

and ψ̄ get masses of O(Ms),
ˆ̃N3 gets a mass of O(M̂N ) and Ĥd gets a mass of O(H).

After integrating out these fields, and neglecting terms proportional to µ and Vsoft,
34 the

potential (C.2), now in terms of ψ and φ, is given by:

V ≈ g2
B−L
2


O(1)

∣∣∣∣∣
ĥφ2

M̂N

∣∣∣∣∣

2

− 1

2
|φ|2 + q

|Ms|4
|ψ|2 − q|ψ|2 − NF

4π2
〈∂TG

K〉




2

+ ĥ2|φ|4

+O(1)
|ĥ|4|φ|6
|M̂N |2

+ 3(b′φ)H
2|φ|2 + O(1)

(
3b′N + 1

)
H2 |ĥ|2|φ|4

|M̂N |2
+ 3(b′ψ)H2|ψ|2

+3
(
b′ψ̄

)
H2 M

4
s

|ψ|2 −O(1)H

(
ĥ2φ4

M̂N

+ h.c.

)
(C.6)

The D-term contribution in (C.6) can vanish naturally by a shift of ψ. Requiring a vanish-

ing D-term is justified since the curvature around the minimum of the D-term potential is

of O(M2
s ), which is much larger than the curvature (O(H2)) of the F -term potential. This

34since these are much smaller than other terms
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guarantees that φ remains an approximate flat-direction and gets a large vev, as we will

see below. From (C.6), the vev of |ψ| is given by:

|ψ|2 = M2
s

[(
1 − β

4

)1/2

− β

4

]

where βM2
s =

(
1

2
|φ|2 − ξeff −O(1)

|ĥ|2|φ|4
|M̂N |2

)
(C.7)

β has to satisfy the constraint that the quantity (1 − β
4 ) in the square root in (C.7) is

positive, implying that β < 4. As will be shown self-consistently, β can in fact be naturally

smaller than unity, so that one can expand the expression for |ψ| in (C.7) in powers of β/4.

This implies that after substituting the expression for |ψ| in (C.7) in (C.2), one gets the

following potential for φ:

V ≈ O(1)
|ĥ|4|φ|6
|M̂N |2

+ 3(b′φ)H
2|φ|2 + O(1)(3b′N + 1)H2 |ĥ|2|φ|4

|M̂N |2
−O(1)H

(
ĥ2φ4

M̂N

+ h.c.

)

+3H2M2
s

(
b′ψ + b′ψ̄

)
+

9

8
H2M2

s β
(
b′ψ̄ − b′ψ

)
+

3

128
H2M2

s β
2
(
19b′ψ̄ − b′ψ

)

or, V ≈ −9

8
H2(b′ψ̄ − b′ψ)ξeff +

3

128

H2

M2
s

(19b′ψ̄ − b′ψ)ξ2eff

+

(
3(b′φ) +

9

16
(b′ψ̄ − b′ψ) − 3

128

ξeff
M2
s

(19b′ψ̄ − b′ψ)

)
H2|φ|2

+O(1)H2|φ|4
(

|ĥ|2
|λ|2M2

s

[
2 + 3b′N + b′ψ − b′ψ̄ +

3

64

ξeff
M2
s

(19b′ψ̄ − b′ψ)

]

+
3

512

(19b′
ψ̄
− b′ψ)

M2
s

)
−O(1)H

(
ĥ2φ4

|λ|Ms
+ h.c.

)
+ O(1)

|ĥ|4|φ|6
|λ|2M2

s

−O(1)
3

128
(19b′ψ̄ − b′ψ)

H2

M2
s

|ĥ|2|φ|6
|λ|2M2

s

+ O(1)
3

128
(19b′ψ̄ − b′ψ)

H2

M2
s

|ĥ|4|φ|8
|λ|4M4

s

(C.8)

where we have used H . M̂N and M̂N ∼ λMs. From section 3.3, one requires a small ( ĥ
2

λ )

to get the desired baryon asymmetry. In addition, we will require a small ( ĥλ ) as well. It

has been argued in sections 4.3.1 and 4.3.2 this this can be naturally obtained. This will

turn out to lead to our initial condition ĥ|φ| ≪ M̂N . Therefore, the leading order potential

will be considerably simplified:

V ≈ V0 +

(
3(b′φ) +

9

16
(b′ψ̄ − b′ψ) − 3

128

ξeff
M2
s

(19b′ψ̄ − b′ψ)

)

×H2|φ|2 + O(1)H2|φ|4
(

3

512

(19b′
ψ̄
− b′ψ)

M2
s

)
(C.9)

where all terms proportional to ( ĥλ) and ( ĥ
2

λ ) arise at subleading order. V0 stands for terms

which do not depend on φ. In order to get a large vev, the mass-squared for |φ| in (C.9) has
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to be negative. As argued in section 3.1, this is quite naturally possible for b′φ, b
′
ψ, b

′
ψ̄
∼ O(1)

and ξeff . M2
s . Hence this will be assumed to be the case. Minimizing the potential with

respect to |φ|, one gets:

|φ|2 ≈ O(1)

(
−3(b′φ) − 9

16 (b′
ψ̄
− b′ψ) + 3

128
ξeff
M2

s
(19b′

ψ̄
− b′ψ)

)

(
3

256 (19b′
ψ̄
− b′ψ)

) M2
s ≡

c2φ
2k2
φ

M2
s

(using the notation in section 3.2) (C.10)

we see that |φ| ∼ Ms is naturally allowed. We now check the self-consistency of our solu-

tions. µ≪ H . M̂N just reflects our starting expectations about low-scale supersymmetry

and high scale inflation together with a large right-handed neutrino mass M̂N . From the

solution for |φ| above, we have ĥ|φ|
M̂N

≈ ĥ
λ

|φ|
Ms

≪ 1 because ( ĥλ) is suppressed. Also, ξeff is

given by the expression:

ξeff = −Qm
4π2

〈∂Tm K〉 (C.11)

For K = m2
p(−nm log(Tm + T̄m) + · · · ) with nm = O(1) occurring in string compactifica-

tions, one gets:

ξeff ∼ nmQm
8π2 〈τm〉

m2
p . M2

s (C.12)

for Q = O(1) and 〈τm〉 & O(1). Thus, from (C.7), (C.10) and (C.12), β < 1 is quite

natural, allowing an expansion of |ψ| in powers of β/4. This also implies that |ψ| . Ms

from (C.7). Thus, we have checked that our solution is consistent with all requirements on

the field space as in (C.3).

D D-term contribution to masses of moduli

We saw in section 4 and in the previous section that U(1) D-terms depend on the moduli.

An effective Fayet-Iliopoulos (FI) parameter arises when these moduli are stabilized. In

order to not destabilize the minima obtained from the F -term potential, one would like

all the D-terms to vanish. This will give rise to additional constraints on the moduli in

general. Two kinds of situations can arise. If the moduli appearing in the D-terms are

not stabilized by other effects such as higher order corrections to the kähler potential, then

the requirement of a vanishing D-term can stabilize the moduli if the vacuum expectation

values (vevs) of charged matter fields are determined by other considerations. In the second

situation, it could happen that the moduli are stabilized by other effects such as higher

order corrections to the kähler potential. In this case, the vevs of charged matter fields

could be determined in terms of the stabilized moduli. For the U(1)B−L D-term studied in

the previous section, we have assumed the second case. In both situations, one could look

at fluctuations around the minima of the moduli (where the D-terms vanish) and compute

their masses. It turns out that the D-term contribution to the masses of these moduli are
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generically much larger than m3/2, as we argue below. This is also supported by arguments

given in [58].

We study the D-term contribution to the potential around the minimum. For con-

creteness, we will study the U(1)B−L D-term studied in the previous section and compute

the mass of the modulus Tm. This is given by:

VD = 〈VD〉 + δ VD

=
m2
pQ

2
m n

2
m

(8π2)2 〈τm〉2
(δ T̂m)2 (D.1)

Here we have assumed that the D-term potential vanishes at the minimum and that K =

m2
p [−nm log(Tm + T̄m) + · · · ]. Since the mass matrix of canonically normalized moduli Xi

is given by m̂2
ij = K−1

ij m
2
ij where m2

ij is the mass matrix of the un-normalized moduli, the

mass of the canonically normalized modulus Tm is given by:

m̂Tm ≈ n
1/2
m Qmmp

8π2
& 10−2mp (D.2)

for nm, Qm = O(1). Thus, the D-term contribution to the moduli masses are much larger

than m3/2.
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